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Preface to the First Edition

We wrote this book to introduce undergraduates to some interesting ideas in algebraic
geometry and commutative algebra. Until recently, these topics involved a ot of abstract
mathematics and were only taught in graduate school. But in the 1960s, Buchberger and
Hironaka discovered new algorithms for manipulating systems of polynomial equations.
Fueled by the development of computers fastenough to run these algorithms, the last two
decades have seen a minor revolution in commutative algebra. The ability to compute
efficiently with polynomial equations has made it possible to investigate complicated
examples that would be impossible to do by hand, and has changed the practice of much
research in algebraic geometry. This has also enhanced the importance of the subject
for computer scientists and engineers, who have begun to use these techniques in a
whole range of problems.

It is our belief that the growing importance of these computational techniques
warrants their introduction into the undergraduate (and graduate) mathematics cur-
riculum. Many undergraduates enjoy the concrete, almost nineteenth-century, flavor
that a computational emphasis brings to the subject. At the same time, one can do some
substantial mathematics, including the Hilbert Basis Theorem, Elimination Theory, and
the Nulistellensatz.

The mathematical prerequisites of the book are modest: the students should have had
a course in linear algebra and a course where they learned how to do proofs. Examples
of the Iatter sort of course include discrete math and abstract algebra. It is important to
note that abstract algebra is not a prerequisite. On the other hand, if all of the students
have had abstract algebra, then certain parts of the course will go much more quickly.

The book assumes that the students will have access to a computer algebra system.
Appendix C describes the features of AXIOM, Maple, Mathematica, and REDUCE that
are most relevant to the text. We do not assume any prior experience with a computer.
However, many of the algorithms in the book are described in pseudocode, which may
be unfamiliar to students with no background in programming. Appendix B contains a
careful description of the pseudocode that we use in the text.

In writing the book, we tried to structure the material so that the book could be used
in a variety of courses, and at a variety of different levels. For instance, the book could
serve as a basis of a second course in undergraduate abstract algebra, but we think that
it just as easily could provide a credible alternative to the first course. Although the
book is aimed primarily at undergraduates, it could also be used in various graduate
courses, with some supplements. In particular, beginning graduate courses in algebraic
geometry or computational algebra may find the text useful. We hope, of course, that

vii




viii Preface to the First Edition

mathematicians and colleagues in other disciplines will enjoy reading the book as much
as we enjoyed writing it.

The first four chapters form the core of the book. It should be possible to cover them
in a 14-week semester, and there may be some time left over at the end to explore other
parts of the text. The follows chart explains the logical dependence of the chapters:

1
]
2
[
3
|
4

VAN

N/
9

See the table of contents for a description of what is covered in each chapter. As the
chart indicates, there are a variety of ways to proceed after covering the first four
chapters. Also, a two-semester course could be designed that covers the entire book.
For instructors interested in having their students do an independent project, we have
included a list of possible topics in Appendix D.

It is a pleasure to thank the New England Consortium for Undergraduate Science
Education (and its parent organization, the Pew Charitable Trusts) for providing the
major funding for this work. The project would have been impossible without their
support. Various aspects of our work were also aided by grants from IBM and the Sloan
Foundation, the Alexander von Humboldt Foundation, the Department of Education’s
FIPSE program, the Howard Hughes Foundation, and the National Science Foundation.
We are grateful for their help. ‘

We also wish to thank colleagues and students at Ambherst College, George Ma-
son University, Holy Cross College, Massachusetts Institute of Technology, Mount
Holyoke College, Smith College, and the University of Massachusetts who partici-
pated in courses based on early versions of the manuscript. Their feedback improved
the book considerably. Many other colleagues have contributed suggestions, and we
thank you all.

Corrections, comments and suggestions for improvement are welcome!

November 1991 David Cox

John Lintle
Donal O’ Shea



Preface to the Second Edition

In preparing a new edition of Ideals, Varieties, and Algorithms, our goal was to cor-
rect some of the omissions of the first edition while maintaining the readability and
accessibility of the original. The majors changes in the second edition are as follows:
e Chapter?2: A better acknowledgement of Buchberger’s contributions and an improved

proof of the Buchberger Criterion in §6.
® Chapter 5: An improved bound on the number of solutions in §3 and a new §6 which

completes the proof of the Closure Theorem begun in Chapter 3.

o Chapter 8: A complete proof of the Projection Extension Theorem in §5 and a new

§7 which contains a proof of Bezout’s Theorem.

e Appendix C: a new section on AXIOM and an update on what we say about Maple,

Mathematica, and REDUCE.

Finally, we fixed some typographical errors, improved and clarified notation, and
updated the bibliography by adding many new references.

We also want to take this opportunity to acknowledge our debt to the many people
who influenced us and helped us in the course of this project. In particular, we would
like to thank:

e David Bayer and Monique Lejeune-Jalabert, whose thesis BAYER (1982) and notes

LEJEUNE-JALABERT (1985) first acquainted us with this wonderful subject.

e Frances Kirwan, whose book KIRwaN (1992) convinced us to include Bezout’s

Theorem in Chapter 8.

e Steven Kleiman, who showed us how to prove the Closure Theorem in full generality.

His proof appears in Chapter 5.

e Michael Singer, who suggested improvements in Chapter 5, including the new

Proposition 8 of §3.

* Bernd Sturmfels, whose book STURMFELS (1993) was the inspiration for Chapter 7.
There are also many individuals who found numerous typographical errors and gave us
feedback on various aspects of the book. We are grateful to you all!

As with the first edition, we welcome comments and suggestions, and we pay $1 for
every new typographical error.

October 1996 David Cox

John Little
Donal O’ Shea
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Geometry, Algebra, and Algorithms

This chapter will introduce some of the basic themes of the book. The geometry we are
interested in concerns affine varieties, which are curves and surfaces (and higher di-
mensional objects) defined by polynomial equations. To understand affine varieties, we
will need some algebra, and in particular, we will need to study ideals in the polynomial

ring k{x, ..., x,]. Finally, we will discuss polynomials in one variable to illustrate the
role played by algorithms.

§1 Polynomials and Affine Space

To link algebra and geometry, we will study polynomials over a field. We all know what
polynomials are, but the term fie/d may be unfamiliar. The basic intuition is that a field
is a set where one can define addition, subtraction, multiplication, and division with the
usual properties. Standard examples are the real numbers R and the complex numbers
€, whereas the integers Z are not a field since division fails (3 and 2 are integers, but
their quotient 3/2 is not). A formal definition of field may be found in Appendix A.
One reason that fields are important is that linear algebra works over any field. Thus,
even if your linear algebra course restricted the scalars to lie in IR or €, most of the
theorems and techniques you learned apply to an arbitrary field k. In this book, we will
employ different fields for different purposes. The most commonly used fields will be:
e The rational numbers @Q: the field for most of our computer examples.
¢ The real numbers RR: the field for drawing pictures of curves and surfaces.
¢ The complex numbers C: the field for proving many of our theorems.
On occasion, we will encounter other fields, such as fields of rational functions (which
will be defined later). There is also a very interesting theory of finite fields—see the
exercises for one of the simpler examples.
We can now define polynomials. The reader certainly is familiar with polynomials in
one and two variables, but we will need todiscuss polynomials in n variables x;, .. ., X
with coefficients in an arbitrary field k. We start by defining monomials.

Definition 1. A monomial in x;. ..., x, is a product of the form

a o o,
Xy X X0,



2 1. Geometry, Algebra, and Algorithms

where all of the exponenis a,, . . ., a, are nonnegative integers. The total degree of
this monomial is the sum o + - - - + «,,.

We can simplify the notation for monomials as follows: lete = (@y, ..., @,) be an
n-tuple of non-negative integers. Then we set

L LTI S BN
x* =x"x X,

Whena = (0, ..., 0), note that x* = 1. We also let || = o) + - - - + «, denote the
total degree of the monomial x°.

Definition 2. A polynomial f in x,, ..., x, with coefficients in k is a finite linear

combination (with coefficients in k) of monomials. We will write a polynomial f in the
form

f=) a;x’ a, €k,
[’3

where the sum is over a finite number of n-tuples @ = (ay,...,a,). The set of all
polynomials in x,, . .., x, with coefficients in k is denoted k[x,, . .., x,)-

When dealing with polynomials in a small number of variables, we will usually
dispense with subscripts. Thus, polynomials in one, two, and three variables lie in k[x],
klx, y]and k[x, y. z], respectively. For example,

3
f =23y + 3 V323 — 3xyz + y?
is a polynomial in Q{x, y, z]. We will usually use the letters f, 2. h, p, g, r toreferto

polynomials.
We will use the following terminology in dealing with polynomials.

Definition 3. Ler f = X,a,x* be a polynomial ink(x,, ..., x,].
(i) We call a, the coefficient of the monomial x°.
(ii) Ifa, # O, then we call a,x%a term of f.

(iii) Thetotal degree of f, denoted deg( f), is the maximum {a| such that the coefficient
Qq iS5 nonzero.

As an example, the polynomial f = 2x3y%z + 1 y323 — 3xyz + y? given above has
four terms and total degree six. Note that there are two terms of maximal total degree,

which is something that cannot happen for polynomials of one variable. In Chapter 2,
we will study how to order the terms of a polynomial.

The sum - and product of two polynomials is again a polynomial. We say

that a polyncmial f divides a polynomial g provided that g = fh for some
h e k[xl, .. ,X,,).
One can show that, under addition and multiplication, k[xy, . . ., x, ] satisfies all of the

field axioms except for the existence of multiplicative inverses (because, for example,
1/x; is not a polynomial). Such a mathematical structure is called 2 commutative ring

(see Appendix A for the full definition), and for this reason we will referto k[x,, . . . , x,/]
as a polynomial ring.




§1. Polynomials and Affine Space 3

The next topic to consider is affine space.

Definition 4. Given a field k and a positive integer n, we define the n-dimensional
affine space over k to be the set

k" ={(a)y-~-»an):a),---,an Ek}

For an example of affine space, consider the case k = IR. Here we get the familiar
space IR” from calculus and linear algebra. In general, we call k' = & the affine line
and k? the affine plane.

Let us next see how polynomials relate to affine space. The key idea is that a
polynomial f = X,a,x“ € k[x, ..., x,] gives a function

[k =k

defined as follows: given (a;, ...,a,) € k", replace every x; by a; in the expres-
sion for f. Since all of the coefficients also lie in &, this operation gives an element
flai,...,a,) € k. The ability to regard a polynomial as a function is what makes it
possible to link algebra and geometry.

This dual nature of polynomials has some unexpected consequences. For example,
the question “is f = 07" now has two potential meanings: is f the zero polynomial?,
which means that all of its coefficients a, are zero, or is f the zero function?, which
means that f(aj,...,a,) = Oforall (a;,..., a,) € k". The surprising fact is that
these two statements are not equivalent in general. For an example of how they can
differ, consider the set consisting of the two elements O and 1. In the exercises, we will
see that this can be made into a field where 1 + 1 = 0. This field is usually called IF;.
Now consider the polynomial x2 — x = x(x = 1) € F,{x]. Since this polynomial
vanishes at 0 and 1, we have found a nonzero polynomial which gives the zero function
on the affine space IF}. Other examples will be discussed in the exercises.

However, as long as k is infinite, there is no problem.

Proposition 5. Let k be an infinite ﬁeld', andlet f € k[xy,...,x,).Then f =0 in
klxi,....x,]ifand only if f : k" — k is the zero function.

Proof. One direction of the proof is obvious since the zero polynomial clearly gives
the zero function. To prove the converse, we need to show that if f¢a;, .. ., a) =0
for all (ay, ..., a,) € k", then f is the zero polynomial, We will use induction on the
number of variables n.

When n = 1, it is well known that a nonzero polynomial in k[x] of degree m has at
most m distinct roots {(we will prove this fact in Corollary 3 of §5). For our particular
f € k[x], we are assuming f(a) = O foralla € k. Since k is infinite, this means that
f has infinitely many roots, and, hence, f must be the zero polynomial.

Now assume that the converse is true forn — 1, and let f € k[x;,....x,] be a
polynomial that vanishes at all points of k. By collecting the various powers of x,,, we
can write f in the form

N
f = Z gi(xh LR xu—l)x,',s
i=0
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where g; € k[x|, ..., x,-1]. We will show that each g; is the zero polynomial inn — 1
variables, which will force f to be the zero polynomial in k[x), ..., x,]

If we fix (aj,...,a,~1) € k"', we get the polynomial f(ay,...,au-1,X,) €
k{x,}. By our hypothesis on f, this vanishes for every a, € k. It follows from the case
n = lthat f(ay, ..., a,_1, X,)is the zero polynomial in k[x,, }. Using the above formula
for f,we seethatthe coefficientsof f(ay, ..., ap-1, x,)are gi(a, . . ., an-1), and thus,
gilai,...,a,—1) = Oforalli.Since (ay, ..., a,—) was arbitrarily chosen in k"~ it
follows that each g; € k[x,, ..., x,~] gives the zero function on k"=, Our inductive
assumption then implies that each g, is the zero polynomial in k[x;, ..., x,_;]. This

forces f to be the zero polynomial in k[x;, ..., x,] and completes the proof of the
proposition. a

Note that in the statement of Proposition 5, the assertion “ f = O ink[x;, ..., x,}”
means that f is the zero polynomial, i.e., that every coefficient of f is zero. Thus, we
use the same symbol “0” to stand for the zero element of k and the zero polynomial in
ki{x1, ..., xa}. The context will make clear which one we mean.

As a corollary, we see that two polynomials are equal precisely when they give the
same function on affine space.

Corollary 6. Let k be an infinite field, and let f, g € k{xy,...,x,). Then f = g in
klxi,....x.Jifand onlyif f : k" — kand g : k" — k are the same function.

Proof. To prove the nontrivial direction, suppose that f, g € k[x), ..., x,] give the
same function on k". By hypothesis, the polynomial f — g vanishes at all points of k".
Proposition 4 then implies that f — g is the zero polynomial. This proves that f = g
ink{xy, ..., x.). 0

Finally, we need to record a special property of polynomials over the field of complex
numbers C.

Theorem 7. Every nonconstant polynomial f € C[x] has a root in C.

Proof. This is the Fundamental Theorem of Algebra, and proofs can be found in most
introductory texts on complex analysis (although many other proofs are known). [

We say that a field & is algebraically closed if every nonconstant polynomial in k(x]
has a root.in k. Thus IR is not algebraically closed (what are the roots of x2 + 1?),
whereas the above theorem asserts that € is algebraically closed. In Chapter 4 we will
prove a powerful generalization of Theorem 7 called the Hilbert Nullstellensatz.

EXERCISES FOR §1

1. Let[Fy = {0, 1}, and define addition and multiplicationby0 +0=1+1=0,0+1 =
140=10.0=0-1=1.0=0and!-1 = 1. Explain why IF, is a field. {You need
not check the associative and distributive properties, but you should verify the existence of
identities and inverses, both additive and multiplicative.)

2. Let IF; be the field from Exercise 1.
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a. Consider the polynomial g(x, y) = x%y + y?x € IF;{x, y). Show that g(x, y) = 0 for
every (x, y) € IF}, and explain why this does not contradict Proposition 5.
b. Find a nonzero polynomial in IF;[x, y, z] which vanishes at every point of IF3. Try to find
one involving all three variables.
c. Find a nonzero polynomial in IF;[xy, ..., x,.] which vanishes at every point of IF;. Can
you find one in which all of x;, . . ., x, appear?
3. (Requires abstract algebra). Let p be a prime number. The ring of integers modulo p is a field
with p elements, which we will denote IF,.
a. Explain why IF, — {0} is a group under multiplication.
b. Use Lagrange's Theorem to show thata”~' = | foralla € F, — {0}.
c. Prove thata” = g foralla € IF,. Hint: Treat the cases a = 0 and a # 0 separately.
d. Find a nonzero polynomial IF,[x] which vanishes at every point of IF,. Hint: Use part c.
4. (Requires abstract algebra.) Let F be a finite field with g elements. Adapt the argument of
Exercise 3 to prove that x? — x is a nonzero polynomial in F[x] which vanishes at every point
of F. This shows that Proposition 5 fails for all finite fields.

5. In the proof of Proposition 5, we took f € k[x, ..., x,] and wrote it as a polynomial in x,
with coefficients in k[xy, ..., x,-;]. To see what this looks like in a specific case, consider
the polynomial

fxy. ) =y —x* + 5 +x%2 -y +xy+2x — 5z + 3.
a. Write f as a polynomial in x with coefficients in k{y, z].
b. Write f as a polynomial in y with coefficients in k[x, z].
¢. Write f as a polynomial in z with coefficients in &[x, y].
6. Inside of C", we have the subset Z", which consists of all points with integer coordinates.

a. Prove that if f € Clx,,..., x,] vanishes at every point of ZZ", then f is the zero
polynomial. Hint: Adapt the proof of Proposition S.

b. Let f € Clxy, ..., x,], and let M be the largest power of any variable that appears in f.
Let Z3, , be the set of points of Z", all coordinates of which lie between 1 and M + 1.
Prove that if f vanishes at all points of Z7, _ ,, then f is the zero polynomial.

§2 Affine Varieties

We can now define the basic geometric object of the book.

Definition. 1. Ler k be a field, and let fi, ..., f; be polynomials in k[xi, ..., x,).
Then we set

V(fi,.-.. ) =a,....a,) €k": filar,...,a,) =0foralll <i <s5s}.
Wecall V(fy, ..., f;) the affine variety defined by f,, ..., f;.

Thus, an affine variety V(fi, ..., fi) C k" is the set of all solutions of the system
of equations fi(x;, ..., xy) =--- = fi(xy,...,x,) = 0. We will use the letters V,
W, etc. to denote affine varieties. The main purpose of this section is to introduce the
reader to lots of examples, some new and some familiar. We will use ¥ = IR so that we
can draw pictures.

We begin in the plane IR? with the variety V(x? + y? — 1), which is the circle of
radius 1 centered at the origin:
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<

The conic sections studied in analytic geometry (circles, ellipses, parabolas, and hyper-
bolas) are affine varieties. Likewise, graphs of polynomial functions are affine varieties
[the graph of y = f(x) is V(¥ — f(x))]. Although not as obvious, graphs of rational

functions are also affine varieties. For example, consider the graph of y = "—X‘l :

30¢Y

20f

-10

It is easy to check that this is the affine variety V(xy — x* + 1).
Next, let us look in 3-dimensional space IR®. A nice affine variety is given by

paraboloid of revolution V(z — x? — y?), which is obtained by rotating the parabola

z = x2 about the z-axis (you can check this using polar coordinates). This gives us the
picture:

R 1Y
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