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Preface

Computational mechanics is well established and widely used in diverse fields of engineering
and science. Nevertheless, it is a comparatively recent field that is still rapidly developing.
Vast improvements in computational capabilities have made possible the routine computa-
tional simulation of mechanical and structural systems that would have been unimaginable
only a few decades ago. Recent advances in information technology and bioscience have also
led to the development of soft computing systems that provide new directions in computa-
tional mechanics.

There are now a number of excellent and widely used commercially available general-
purpose software packages for simulating well into the nonlinear range the response of
diverse types of structural and mechanical systems. Extensive material model and finite
element libraries are a typical feature of these packages. In addition, in-house proprietary
software systems for nonlinear analysis remain in use in many industries.

The justification and verification of analysis result from large-scale simulations that have
become even more critical than the modeling and analysis itself. Engineering practitioners
need a thorough understanding of the underlying fundamentals on which these computa-
tional tools are based in order to utilize them most effectively in their work. This book is
intended to provide much of that necessary background in an accessible form.

The book can serve as a reference for engineers, analysts, and software developers in prac-
tice, as well as a graduate course text. Graduate students in various engineering and science
disciplines can benefit from the relatively broad coverage of topics, including an introduction
to information-based material modeling (in Chapter 12, “Soft Computing in Computational
Mechanics”).

We assume that the reader is familiar with the basics of linear finite element analysis; that of
course requires a working knowledge of the fundamentals of mechanics and of linear elastic-
ity theory. We do not therefore cover in detail basic linear finite element theory; that would
require an entire book in itself, and there are many excellent references available.

We start with an overview of linear and nonlinear mechanics and some simple examples of
nonlinear behavior in Chapter 1. This is followed by three chapters (Chapters 2 through 4)
discussing the fundamentals of nonlinear continuum mechanics, including the treatment of
large displacements and strains (geometric nonlinearity), definitions of stresses and strains
and their rates, and the principle of virtual work. Chapters 5 through 7 describe constitutive
laws governing stress—strain relations, including material nonlinearity: Chapter S covers lin-
ear and nonlinear elastic material properties, Chapter 6 discusses stress invariants and mate-
rial testing, and Chapter 7 covers elastoplastic material models. In Chapter 8, we discuss
applications involving solid continuum mechanics, specifically the total Lagrangian formula-
tion and the updated Lagrangian formulation.
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The treatment of large rotations in three dimensions, required for nonlinear applications
involving structural finite elements (i.e., beams, plates, and shells) with nodal rotational
degrees of freedom, is presented in Chapter 9. Formulations for structural elements, including
beams, plates, and shells, are covered in Chapter 10, before the discussion of incremental-iter-
ative numerical solution methods for computational simulation in Chapter 11.

With the exception of this latter presentation of incremental-iterative Newton—-Raphson
methods, we do not attempt to delve deeply into the large inventory of numerical algorithms
that are the cornerstones of numerical computational mechanics. That also requires an entire
book in itself (see Ghaboussi and Wu, Numerical Methods in Computational Mechanics,
CRC Press, Taylor & Francis Group 2016).

Throughout the book, we consistently present simple examples to illustrate and clarify the
basic concepts and mechanics fundamentals that are being discussed.
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