3

HTEFRITRE

(SR3ZhR)

CALVIN LIN
LAWRENCE SNYDER

Calvin Lin
BREHAZRITHR
() Lawrence Snyder %
EBRFAEFRBREAIR

[A 5

China Machine Press

HTERRTRE

Principles of
Parallel Programming

\Y
BRETAREETHR

(%) Lawrenc
LR AFAEER SR

B T v AR &
China Machine Press

English reprint edition copyright © 2008 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Principles of Parallel Programming (ISBN 978-0-321-
48790-2) by Calvin Lin and Lawrence Snyder, Copyright © 2009 Pearson Education, Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A A5 Y CRZEN AR Hi Pearson Education Asia Ltd AU Tolk RS AR . AR 48 AR
FHAMVF AT, AERLMER A E S A BN,

IR T rpfie NRGIEFIE BN (AR B &, R T X Arp [S S X)) Y
ERT.

A5 3 45 Pearson Education (¥5A4: %0 HIMRER) BOEBH DhFr%, TARZE & A48,

TR, BRbR,

APEEME JERHRERITESFR

ABREEIZS: B=. 01-2008-3270
BEHERSBE (CIP) ¥iE

HATR BB (JE3chR) / (38) #k (Lin, C.), (3€) #iZ54& (Snyder,L.) #¥. —it
3 WMl Rtk 2008.8

(2 il 45 1%)

#4544 3C . Principles of Parallel Programming

ISBN 978-7-111-24734-0
L3 OO O#F- WLHFTRF-RFEI-3%3C V. TP31111
Al A P 3 1R CIP R i % 7 (2008) 551099945

BUBE ol AR AL Cleseili sz @5 Bk 228 WBEc4aRS 100037)
s fEgniE: BIRE

e ERABEN R PR A B EDR - Frieds e A6 RAT BT KAT
2008458 H 45 Li 55 12 ET1]

170mm x 242mm - 22.25E18k

FrifE455 ;. ISBN 978-7-111-24734-0

FEy: 49.007¢

JUASS, mART, BT, G, mAtRiTEiER
Ak . (010) 68326294

HIRBENE

XEE LA, B KAFHERIE SRR EAE, i ERE B RF
FHEAGUSER A T 2R th ERXHEENES, FEEERBEAXRS
T2 ERZRKIEN, O, ER RS, EEN™LRSEE F 8ok
THEE A, HRIVER A 2 R U R S B B R B ar £, Bk 7 A
R MBS EE, AER TG, BBETHREDS, REEEARE,
X AAFENME, KOEHASEE ARG EoR .

ULAE, fE2KREBMAKEIHEZ T, RETFEI LR ERE, ek AL
kHZAY), XX HRILEE R MR RNLE, hadkdk: mL Bk
FEHHERE LEHAEERE, EREGEEEARERAZEMNIRT, XEERLE
KA EIR# R R ERBPENS BB DA T S EREY 2L, Fik, 5l
BE— U ESMETE THRALBA B B TR EE bk REBR N ER, b
S5, 2R ERMHE —RAFHSHZK.,

HLAR Tl i iipt e Rt R R IR B "R BEARF RS . A 1998414k, fkisy
K TEE AURE Tk, BEERIMEBEM L. 2dL2ENFRE D, RINE
Pearson, McGraw-Hill, Elsevien, MIT, John Wiley & Sons Wiley, CengageZ§it- i3 4 1!
W2 RIRESL T RAFIIATERFR, AN TEA % FhHob o B 2 Andrew S. Tanenbaum,
Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie Jim Gray, Afred V. Aho, John E.
Hopcroft, Jeffrey D. Uliman, Abraham Silberschatz, William Stallings, Donald E. Knuth,
John L. Hennessy & KUl & KA —H# L B1ER, Lo “UEHEEANE” hERHER, ik
F2, WPRKR . KEASPRRFE, WEERR TiXENBH AR,

“HREALBHENS" (IR AR TENIMEEN R R, BENNER AR
BT ERERIE S, 1L SRR AR T BRI SRR T R A VRS A 2
RIEHAE M EEERE, ARG ERAEBOFIEREF. €4, “UHEIBZEAE"
B4tk TEMEA MR, XEBEERERRLT RO, HEr2ERRA
HERBEMMSEZBE, HEOR “SHFRRASE" 10 h ik i th bk kbt £ 92
BRI FRTRA,

BURHITER . SMMEM . — RIS, MRS, BaRsmE, XsREFER
MEEA TRENRIE. BEE B SEAR S LR 1% 0 W 52 BBkt itk
HHBEEORIE, B FxtE M AL T R A0 B A — A B B, $edi]
MBEFRRERERE, i RBPERELBITERX 2% BFRMEERSY ., £E5H
MW A 3 AT TR B A TR IE, ORI T

LZR 4L . www.hzbook.com

B 7 #514 . hzedu@hzbook.com
BEEHEIE. (010) 68995264
BRRMA . AR T EREE 7 AT EEHE

HRIB 4845 . 100037 R L E T L

To Mom and Dad
(Josette and Min Shuey)

To Julie, Dave, and Dan

Preface

Welcome!

For readers who are motivated by the advent of multi-core chips to learn parallel
programming, you've come to the right place. This book is written for a world in
which parallel computers are everywhere, ranging from laptops with two-core chips
to supercomputers to huge data-center clusters that index the Internet.

This book focuses on scalable parallelism, that is, the ability of a parallel program to
run well on any number of processors. This notion is critical for two reasons:
(1) Most of the techniques needed to create scalable parallel computations are the
same techniques that produce efficient solutions on a multi-core chip, and (2) while
multi-core chips currently have a modest number of processors, typically 2-8, the
number of cores per chip promises to increase dramatically in the coming years,
making the notion of scalable parallelism directly relevant. Thus, while today’s
multi-core chips offer opportunities for low latency communication among cores,
this characteristic is likely a short-term advantage, as on-chip delays to different parts
of the chip will become increasingly apparent as the number of cores grows. So, we
focus not on exploiting such short-term advantages, but on emphasizing approaches
that work well now and in the future. Of course, multi-core chips present their own
challenges, particularly with their limited bandwidth to off-chip memory and their
limited aggregate on-chip cache. This book discusses these issues as well.

First, we discuss the principles that underlie effective and efficient parallel pro-
grams. Learning the principles is essential to acquiring any capability as sophisti-
cated as programming, of course, but principles are perhaps even more important
for parallel programming because the state of the art changes rapidly. Training that
is tied too closely to a specific computer or language will not have the staying power
needed to keep pace with advancing technology. But the principles—concepts that
apply to any parallel computing system and ideas that exploit these features—lead
to an understanding that is timeless and knowledge that will always be applicable.

But we do more than discuss abstract concepts. We also apply those principles to
everyday computations, which makes the book very practical. We introduce several
parallel programming systems, and we describe how to apply the principles in those

Preface

programming systems. On completion, we expect readers to be able to write paral-
lel programs. Indeed, the final chapter is devoted to parallel programming tech-
niques and the development of a term-long parallel programming capstone project.

Audience

Our intended audience is anyone—students or professionals—who has written suc-
cessful programs in C or similar languages and who describes himself as a program-
mer. It is helpful to have a basic idea of how a computer executes sequential
programs, including knowledge of the fetch/execute cycle and basics of caching.
This book was originally targeted to upper level undergraduate computer science
majors or first year graduate students with a CS undergraduate degree, and it con-
tinues to be appropriate for that level. However, as the book evolved, we reduced the
assumed knowledge and emphasized pedagogy in the belief that if some explana-
tions cover knowledge the reader already has, it’s easy to skip forward.

Organization

Because parallel programming is not a direct extension of sequential programming
with which the reader is doubtless familiar, we have organized this book into four
parts:

Foundations: Chapters 1-3
Abstractions: Chapters 4-5
Languages: Chapters 6-9
Looking Forward: Chapters 1011

To enable you to select intelligently from these parts, we now explain their goals and
content.

Foundations. In Chapter 1 we discover the many issues that parallel program-
mers must address by showing how difficult it is to implement a computation that
is trivial when written for sequential computers. The example focuses our attention
on issues that concern us throughout the entire book, but it also emphasizes the
importance of understanding how a parallel computer operates. Chapter 2 intro-
duces five different types of parallel computers, giving a few details about their
architecture and their ability to scale to a larger size. There are two key conclusions
from the chapter: First, unlike sequential computing, there is no standard architec-
ture. Second, to be successful at spanning this architectural diversity we need an
abstract machine model to guide our programming. And we give one. With the
architectures in mind, Chapter 3 covers basic ideas of concurrency, including
threads and processes, latency, bandwidth, speedup, and so forth, with an emphasis
on issues related to performance. These foundations of Part 1 prepare us for an
exploration of algorithms and abstractions.

Preface

Abstractions. As an aid to designing and discussing parallel algorithms, Chapter 4
introduces an informal pseuodcode notation for writing parallel programs in a
language-independent way. The notation has a variety of features that span various
programming models and approaches, allowing us to discuss algorithms without
bias toward any particular language or machine. To bootstrap your thinking about
parallel algorithms, Chapter 5 covers a series of basic algorithmic techniques. By the
end of Part 2, you should be able to conceptualize ways to solve a problem in paral-
lel, bringing us to the final issue of encoding your algorithms in a concrete parallel
programming language.

Languages. There is no single parallel programming language that fulfills the role
that, say, C or Java plays in sequential programming, that is, a language widely
known and accepted as a baseline medium to encode algorithms. As a result, Part 3
introduces three kinds of parallel programming languages: thread-based (Chapter
6), message-passing (Chapter 7), and high-level (Chapter 8). We cover each lan-
guage well enough for you to write small exercises; serious computations require a
more complete language introduction that is available through online resources. In
addition to introducing a language, each chapter includes a brief overview of related
languages that have a following in the parallel programming community. Chapter 9
briefly compares and contrasts all of the languages presented, noting their strengths
and weaknesses. There is benefit to reading all three chapters, but we realize that
many readers will focus on one approach, so these chapters are independent of one
another.

Onward. Part 4 looks to the future. Chapter 10 covers a series of new, promising
parallel technologies that will doubtless impact future research and practice. In our
view, they are not quite “ready for prime time,” but they are important and worth
becoming familiar with even before they are fully deployed. Finally, Chapter 11
focuses on hands-on techniques for programming parallel machines. The first two
sections of the chapter can be read early in your study of parallel programming, per-
haps together with your study of abstractions in Chapters 4 and 5. But the main goal
of the chapter is to assist you in writing a substantial program as a capstone design
project. In this capacity we assume that you will return to Chapter 11 repeatedly.

Using This Book

Although the content is presented in a logical order, it is not necessary to read this
book front to back. Indeed, in a one term course, it may be sensible to begin pro-
gramming exercises before all of the topics have been introduced. We see the follow-
ing as a sensible general plan:

m Chapters 1,2

® Chapter 11 first section, Chapter 3 through Performance Tradeoffs; begin
programming exercises

® Chapters 4, 5

Vil

Preface

® One of Chapters 6-8, programming language chapters
® Complete Chapter 3 and 11, begin term project
m Complete remaining chapters in order: language chapters, Chapters 9, 10

There is, of course, no harm in reading the book straight through, but the advantage
of this approach is that the reading and programming can proceed in parallel.

Acknowledgments

Sincere thanks are due to E Christopher Lewis and Robert van de Geijn, who cri-
tiqued an early draft of this book. Thanks also to the following reviewers for their
valuable feedback and suggestions:

David Bader, Georgia Institute of Technology

Purushotham Bangalore, University of Alabama, Birmingham
John Cavazos, University of Delaware

Sandhya Dwarkadas, University of Rochester

John Gilbert, UC Santa Barbara

Robert Henry, Cray Inc.

E Christopher Lewis, VMWare

Kai Li, Princeton

Glenn Reinman, UCLA

Darko Stefanovic, University of New Mexico

We thank Karthik Murthy and Brandon Plost for their assistance in writing and
running parallel programs and for finding bugs in the text, and we are grateful to
Bobby Blumofe, whose early collaborations on a multi-threaded programming
course are evident in many places in the book. We recognize and thank the students
of the Parallel Programming Environments Seminar (CSE5900) at the University of
Washington in autumn quarter, 2006 for their contributions to the text: Ivan
Beschastnikh, Alex Colburn, Roxana Geambasu, Sangyun Hahn, Ethan Katz-
Bassett, Nathan Kuchta, Harsha Madhyastha, Marianne Shaw, Brian Van Essen, and
Benjamin Ylvisaker. Other contributors are Sonja Keserovic, Kate Moore, Brad
Chamberlain, Steven Deitz, Dan Grossman, Jeff Diamond, Don Fussell, Bill Mark,
and David Mohr.

We would like to thank our editor, Matt Goldstein, and the Addison Wesley team:
Sarah Milmore, Marilyn Lloyd, Barbara Atkinson, Joyce Wells, and Chris Kelly.
Thanks to Gillian Hall who has been especially tolerant of our antics.

Finally, we thank our families for their patience through the writing of this book.

Calvin Lin
Lawrence Snyder
February 2008

PART 1
Foundations

Chapter 1
Introduction

The Power and Potential of Parallelism
Parallelism, a Familiar Concept
Parallelism in Computer Programs
Multi-Core Computers, an Opportunity
Even More Opportunities to Use Parallel
Hardware

Parallel Computing versus Distributed
Computing

System Level Parallelism

Convenience of Parallel Abstractions

Examining Sequential and Parallel
Programs

Parallelizing Compilers

A Paradigm Shift

Parallel Prefix Sum

Parallelism Using Multiple Instruction
Streams

The Concept of a Thread

A Multithreaded Solution to Counting 3s

The Goals: Scalability and Performance
Portability

Scalability

Performance Portability

Principles First

NS SIS

co N

W \O o oo

15
15

25
25
26
27

Contents

Chapter Summary
Historical Perspective
Exercises

Chapter 2
Understanding Parallel
Computers

Balancing Machine Specifics
with Portability

A Look at Six Parallel Computers
Chip Multiprocessors
Symmetric Multiprocessor Architectures
Heterogeneous Chip Designs
Clusters
Supercomputers
Observations from Our Six
Parallel Computers

An Abstraction of a Sequential Computer

Applying the RAM Model
Evaluating the RAM Model

The PRAM: A Parallel Computer Model

The CTA: A Practical Parallel
Computer Model
The CTA Model
Communication Latency
Properties of the CTA

Memory Reference Mechanisms
Shared Memory

27
28
28

30

30

31
31
34
36
39
40

43

44
44
45

46

47
47
49
52

53
53

Contents

One-Sided Communication
Message Passing

Memory Consistency Models
Programming Models

A Closer Look at Communication

Applying the CTA Model

Chapter Summary
Historical Perspective
Exercises

Chapter 3
Reasoning about Performance

Motivation and Basic Concepts
Parallelism versus Performance
Threads and Processes
Latency and Throughput

Sources of Performance Loss
Overhead
Non-Parallelizable Code
Contention
Idle Time

Parallel Structure
Dependences
Dependences Limit Parallelism
Granularity
Locality

Performance Trade-Offs
Communication versus Computation
Memory versus Parallelism
Overhead versus Parallelism

Measuring Performance
Execution Time
Speedup
Superlinear Speedup
Efficiency
Concerns with Speedup

Scaled Speedup versus Fixed-Size Speedup

Scalable Performance

54
54
55
56

57

58

59
59
59

61

61
61
62
62

64
64
65
67
67

68
68
70
72
73

73
74
75
75

77
77
78
78
79
79
81

81

Scalable Performance Is Difficult to Achieve 81

Implications for Hardware
Implications for Software
Scaling the Problem Size

Chapter Summary
Historical Perspective
Exercises

PART 2
Parallel Abstractions

Chapter 4
First Steps Toward Parallel
Programming

Data and Task Parallelism
Definitions
Mlustrating Data and Task Parallelism

The Peril-L Notation
Extending C
Parallel Threads
Synchronization and Coordination
Memory Model
Synchronized Memory
Reduce and Scan
The Reduce Abstraction

Count 3s Example

Formulating Parallelism
Fixed Parallelism
Unlimited Parallelism
Scalable Parallelism

Alphabetizing Example
Unlimited Parallelism
Fixed Parallelism
Scalable Parallelism

Comparing the Three Solutions

Chapter Summary
Historical Perspective
Exercises

82
83
83

84
84
85

87

88

88
88
89

89
90
90
91
92
94
95
96

97

97
97
98
99

100
101
102
104

109

110
110
110

Chapter &
Scalable Algorithmic
Techniques

Blocks of Independent Computatioﬁ

Schwartz' Algorithm

The Reduce and Scan Abstractions

Example of Generalized Reduces
and Scans
The Basic Structure
Structure for Generalized Reduce
Example of Components
of a Generalized Scan
Applying the Generalized Scan
Generalized Vector Operations

112
112
113
115

116
118
119

122
124
125

Assigning Work to Processes Statically 125

Block Allocations

Overlap Regions

Cyclic and Block Cyclic Allocations
Irregular Allocations

Assigning Work to Processes
Dynamically
Work Queues
Variations of Work Queues
Case Study: Concurrent Memory
Allocation

Trees
Allocation by Sub-Tree
Dynamic Allocations

Chapter Summary
Historical Perspective
Exercises

PART 3

Parallel Programming
Languages

Chapter 6

Programming with Threads
POSIX Threads

Thread Creation and Destruction

126
128
129
132

134
134
137

137

139
139
140

141
142
142

143

145

145
146

Contents

Mutual Exclusion
Synchronization
Safety Issues
Performance Issues

Case Study: Successive Over-Relaxation
Case Study: Overlapping Synchronization

with Computation

Case Study: Streaming Computations

on a Multi-Core Chip

Java Threads
Synchronized Methods
Synchronized Statements
The Count 3s Example
Volatile Memory
Atomic Objects
Lock Objects
Executors
Concurrent Collections

OpenMP
The Count 3s Example

Semantic Limitations on parallel for

Reduction

Thread Behavior and Interaction
Sections

Summary of OpenMP

Chapter Summary
Historical Perspective
Exercises

Chapter 7
MPI and Other Local View
Languages

MPI: The Message Passing Interface

The Count 3s Example

Groups and Communicators
Point-to-Point Communication
Collective Communication

Example: Successive Over-Relaxation

Performance Issues
Safety Issues

Partitioned Global Address Space
Languages

150
153
163
167
174

179

187

187
189
189
190
192
192
193
193
193

193
194
195
196
197
199
199

200
200
200

202

202
203
211
212
214
219
222
228

229

Contents

Co-Array Fortran
Unified Parallel C
Titanium

Chapter Summary
Historical Perspective
Exercises

Chapter 8
ZPL and Other Global View
Languages

The ZPL Programming Language
Basic Concepts of ZPL

Regions
Array Computation

Life, an Example
The Problem
The Solution
How It Works
The Philosophy of Life

Distinguishing Features of ZPL
Regions
Statement-Level Indexing
Restrictions Imposed by Regions
Performance Model
Addition by Subtraction

Manipulating Arrays of Different Ranks
Partial Reduce
Flooding
The Flooding Principle
Data Manipulation, an Example
Flood Regions
Matrix Multiplication

Reordering Data with Remap
Index Arrays
Remap
Ordering Example

Parallel Execution of ZPL Programs
Role of the Compiler
Specifying the Number of Processes

230
231
232

233
234
234

236
236

237
237
240

242
242
242
243
245

245
245
245
246
246
247

247
248
249
250
251
252
253

255
255
256
258

260
260
261

Assigning Regions to Processes
Array Allocation

Scalar Allocation

Work Assignment

Performance Model
Applying the Performance Model: Life
Applying the Performance Model:
SUMMA
Summary of the Performance Model

NESL Parallel Language
Language Concepts
Matrix Product Using Nested Parallelism
NESL Complexity Model

Chapter Summary
Historical Perspective
Exercises

Chapter 9
Assessing the State of the Art

Four Important Properties of Parallel
Languages

Correctness

Performance

Scalability

Portability

Evaluating Existing Approaches
POSIX Threads
Java Threads
OpenMP
MPI
PGAS Languages
ZPL
NESL

Lessons for the Future
Hidden Parallelism
Transparent Performance
Locality
Constrained Parallelism
Implicit versus Explicit Parallelism

Chapter Summary
Historical Perspective
Exercises

261
262
263
263

264
265

266
266

267
267
268
269

269
269
270

271

271
271
273
274
274

275
275
276
276
276
277
278
278

279
279
280
280
280
281

282
282
282

PART 4
Looking Forward 283
Chapter 10
Future Directions in Parallel
Programming 284
Attached Processors 284
Graphics Processing Units 285
Cell Processors 288
Attached Processors Summary 288
Grid Computing 290
Transactional Memory 291
Comparison with Locks 292
Implementation Issues 293
Open Research Issues 295
MapReduce 296
Problem Space Promotion 298
Emerging Languages 299
Chapel 300
Fortress 300
X10 302
Chapter Summary 304
Historical Perspective 304
Exercises 304
Chapter 11
Writing Parallel Programs 305
Getting Started 305
Access and Software 305
Hello, World 306

Contents [l

Parallel Programming Recommendations 307

Incremental Development 307
Focus on the Parallel Structure 307
Testing the Parallel Structure 308
Sequential Programming 309
Be Willing to Write Extra Code 309
Controlling Parameters during Testing 310
Functional Debugging 310
Capstone Project Ideas 311
Implementing Existing Parallel
Algorithms 311
Competing with Standard Benchmarks 312
Developing New Parallel Computations 313
Performance Measurement 314
Comparing against a Sequential Solution 315
Maintaining a Fair Experimental Setting ~ 315
Understanding Parallel Performance 316
Performance Analysis 317
Experimental Methodology 318
Portability and Tuning 319
Chapter Summary 319
Historical Perspective 319
Exercises 320
Glossary 321
References 325
Index 328

We begin our study of parallel programming by building a solid foundation. The
most important goal is to clarify the difference between the sequential and parallel
programming worlds. In sequential computing, operations are performed one at a
time, making it straightforward to reason about the correctness and performance
characteristics of a program. In parallel computing many operations take place at
once, complicating our reasoning about correctness and performance, and as a
result, modifying our programming approach. This part explains the main conse-
quences of this distinction.

Our introduction to parallel computation in Chapter 1 begins by solving a simple
problem of counting the number of occurrences of 3 in a 1-dimensional array. This
trivial task requires four attempts before we create a program with reasonable per-
formance. Even then, we find that our maximum hoped-for speedup can’t be real-
ized. While working through the example, we introduce a series of basic concepts of
parallelism.

Chapter 2 describes the basic architectural features of parallel computers. It is an
interesting topic in its own right, because challenging problems such as interproces-
sor communication have a multitude of potential solutions, and the techniques that
architects use to address them exhibit considerable ingenuity. The main conclusion of
our tour of parallel machines will be that they are extremely different. Because pro-
grammers need to know certain properties of the underlying machine to write qual-
ity programs, it will be necessary to find a machine model that unifies the disparate
architectures. We introduce such a model as the basis for our subsequent study.

With a clear idea of how parallel computers work, Chapter 3 characterizes the many
conceptual issues surrounding parallel performance. We introduce key ideas includ-
ing latency, bandwidth, speedup and efficiency. Certain facets of programming,
such as dependences, are highlighted as being a source of interference among paral-
lel threads. Once these foundational ideas have been introduced, we will be pre-
pared to move on to the algorithmic ideas presented in Part 2.

introduction

Parallel computation is a fundamental technique by which computations can be
accelerated, so the increasing availability of parallel hardware represents a tremen-
dous opportunity. But implementing a parallel solution presents certain conceptual
and programming challenges that this textbook is designed to address. To place the
opportunities and challenges in perspective, this chapter sets the context and intro-
duces basic ideas.

The Power and Potential of Parallelism

Parallelism arises frequently in everyday life. More importantly, parallelism has con-
tributed in many ways to the steady performance improvement in computers over
the past several decades. And now, new opportunities are available. Let’s look
closely.

Parallelism, a Familiar Concept

Parallelism is a familiar concept. Juggling is a parallel task that humans can perform.
House construction is a parallel activity, because several workers can perform sepa-
rate tasks simultaneously, such as wiring, plumbing, and furnace duct installation,
and so on. Most manufacturing—cars, hairdryers, frozen dinners—is performed in
parallel using an assembly line, or pipeline, in which many units of the product are
under construction at once. A call center, where many employees service customers
at the same time, is another organization that applies parallelism.

Although familiar, these forms of parallelism are different. The call center, for exam-
ple, differs from house construction in a fundamental way: Calls are generally inde-
pendent and can be serviced in any order with little interaction among the workers.
In construction, some tasks can be performed simultaneously—wiring and plumb-
ing—while others are ordered—framing must precede wiring. The ordering
restricts the amount of parallelism that can be applied at once, limiting the speed at
which a construction project can complete. The ordering also increases the degree

2

The Power and Potential of Parallelism

of interaction among the workers. Manufacturing pipelines are different still,
because they generally have strict ordering constraints with the separate stages often
being performed sequentially; the parallelism comes from having many instances of
the product in the pipeline at once. And juggling is an instance of event-driven par-
allelism, where an event—a falling ball—causes the execution of operations—
catching, throwing—in response to the event. Such familiar forms of parallelism
will also arise in our consideration of parallel computation.

Parallelism in Computer Programs

The main motivation for executing program instructions in parallel is to complete a
computation faster. But most programs today are incapable of much improvement
through parallelism, because they were written assuming that the instructions
would be executed in order, one at a time, that is, sequentially. The semantics of
most programming languages embed sequential execution, and the resulting pro-
grams typically rely so heavily on this property for their correctness that it is rare to
find significant opportunities for parallel execution. To be sure, there are some
opportunities, as when the expression (a+b)*(c+d) must be evaluated; assuming
these are simple variables, the subexpressions (a+b) and (c+d) are independent of
each other, so they can be computed simultaneously. Such opportunities are an
example of Instruction Level Parallelism (ILP).

Indeed, one reason that we have continued to write sequential programs is because
computer architects have been so successful at exploiting parallelism. They have
used the steady improvements in silicon technology to add several kinds of paral-
lelism, including ILP, into sequential processor design. First, architects provide sep-
arate wires and caches for instructions and data. The separation allows instruction
and data memory references to execute in parallel without interfering. Second,
instruction execution is pipelined, fetching and decoding future instructions while
the current instruction is being executed and while the results of past instructions
are still being written to memory. Furthermore, the processors issue (initiate) more
than one instruction at a time, they prefetch instructions and data, they specula-
tively perform operations in parallel even if they cannot be sure that they will be
needed, and they use highly parallel circuits to perform basic arithmetic operations.
In short, modern processors are highly parallel systems.

The key point for programmers is that all of this parallelism has been transparently
available to sequential programs. We call this hidden parallelism. Such parallelism,
together with increasing clock speeds, has allowed each succeeding generation of
processor chip to execute programs faster, while preserving the illusion of sequential
execution. But the prospects for finding new opportunities to apply parallelism
while preserving sequential semantics are becoming limited. More seriously, exist-
ing techniques for exploiting ILP have largely reached the point of diminishing
returns, in terms of both power consumption and performance. So, given current

