3

HTEFRITRE

(SR3ZhR)

CALVIN LIN
LAWRENCE SNYDER

Calvin Lin
BREHAZRITHR
() Lawrence Snyder %
EBRFAEFRBREAIR

[ A 5

China Machine Press



HTERRTRE

Principles of
Parallel Programming

\Y
BRETAREETHR

(%) Lawrenc
LR AFAEER SR

B T v AR &
China Machine Press




English reprint edition copyright © 2008 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Principles of Parallel Programming (ISBN 978-0-321-
48790-2) by Calvin Lin and Lawrence Snyder, Copyright © 2009 Pearson Education, Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A A5 Y CRZEN AR Hi Pearson Education Asia Ltd AU Tolk RS AR . AR 48 AR
FHAMVF AT, AERLMER A E S A BN,

IR T rpfie NRGIEFIE BN (AR B &, R T X Arp [ S S X)) Y
ERT.

A5 3 45 Pearson Education (¥5A4: %0 HIMRER) BOEBH DhFr%, TARZE & A48,

TR, BRbR,

APEEME JERHRERITESFR

ABREEIZS: B=. 01-2008-3270
BEHERSBE (CIP) ¥iE

HATR BB (JE3chR) / (38) #k (Lin, C. ), (3€) #iZ54& (Snyder,L.) #¥. —it
3 WMl Rtk 2008.8

(2 il 45 1% )

#4544 3C . Principles of Parallel Programming

ISBN 978-7-111-24734-0
L3 OO O#F- WLHFTRF-RFEI-3%3C V. TP31111
Al A P 3 1R CIP R i % 7 (2008) 551099945

BUBE ol AR AL Cleseili sz @5 Bk 228 WBEc4aRS  100037)
s fEgniE: BIRE

e ERABEN R PR A B EDR - Frieds e A6 RAT BT KAT
2008458 H 45 Li 55 12 ET1 ]

170mm x 242mm - 22.25E18k

FrifE455 ;. ISBN 978-7-111-24734-0

FEy: 49.007¢

JUASS, mART, BT, G, mAtRiTEiER
Ak . (010) 68326294



HIRBENE

XEE LA, B KAFHERIE SRR EAE, i ERE B RF
FHEAGUSER A T 2R th ERXHEENES, FEEERBEAXRS
T2 ERZRKIEN, O, ER RS, EEN™LRSEE F 8ok
THEE A, HRIVER A 2 R U R S B B R B ar £, Bk 7 A
R MBS EE, AER TG, BBETHREDS, REEEARE,
X AAFENME, KOEHASEE ARG EoR .

ULAE, fE2KREBMAKEIHEZ T, RETFEI LR ERE, ek AL
kHZAY), XX HRILEE R MR RNLE, hadkdk: mL Bk
FEHHERE LEHAEERE, EREGEEEARERAZEMNIRT, XEERLE
KA EIR# R R ERBPENS BB DA T S EREY 2L, Fik, 5l
BE— U ESMETE THRALBA B B TR EE bk REBR N ER, b
S5, 2R ERMHE —RAFHSHZK.,

HLAR Tl i iipt e Rt R R IR B "R BEARF RS . A 1998414k, fkisy
K TEE AURE Tk, BEERIMEBEM L. 2dL2ENFRE D, RINE
Pearson, McGraw-Hill, Elsevien, MIT, John Wiley & Sons Wiley, CengageZ§it- i3 4 1!
W2 RIRESL T RAFIIATERFR, AN TEA % FhHob o B 2 Andrew S. Tanenbaum,
Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie Jim Gray, Afred V. Aho, John E.
Hopcroft, Jeffrey D. Uliman, Abraham Silberschatz, William Stallings, Donald E. Knuth,
John L. Hennessy & KUl & KA —H# L B1ER, Lo “UEHEEANE” hERHER, ik
F2, WPRKR . KEASPRRFE, WEERR TiXENBH AR,

“HREALBHENS" (IR AR TENIMEEN R R, BENNER AR
BT ERERIE S, 1L SRR AR T BRI SRR T R A VRS A 2
RIEHAE M EEERE, ARG ERAEBOFIEREF. €4, “UHEIBZEAE"
B4tk TEMEA MR, XEBEERERRLT RO, HEr2ERRA
HERBEMMSEZBE, HEOR “SHFRRASE" 10 h ik i th bk kbt £ 92
BRI FRTRA,

BURHITER . SMMEM . — RIS, MRS, BaRsmE, XsREFER
MEEA TRENRIE. BEE B SEAR S LR 1% 0 W 52 BBkt itk
HHBEEORIE, B FxtE M AL T R A0 B A — A B B, $edi]
MBEFRRERERE, i RBPERELBITERX 2% BFRMEERSY ., £E5H
MW A 3 AT TR B A TR IE, ORI T

LZR 4L . www.hzbook.com

B 7 #514 . hzedu@hzbook.com
BEEHEIE. (010) 68995264
BRRMA . AR T EREE 7 AT EEHE

HRIB 4845 . 100037 R L E T L




To Mom and Dad
(Josette and Min Shuey)

To Julie, Dave, and Dan



Preface

Welcome!

For readers who are motivated by the advent of multi-core chips to learn parallel
programming, you've come to the right place. This book is written for a world in
which parallel computers are everywhere, ranging from laptops with two-core chips
to supercomputers to huge data-center clusters that index the Internet.

This book focuses on scalable parallelism, that is, the ability of a parallel program to
run well on any number of processors. This notion is critical for two reasons:
(1) Most of the techniques needed to create scalable parallel computations are the
same techniques that produce efficient solutions on a multi-core chip, and (2) while
multi-core chips currently have a modest number of processors, typically 2-8, the
number of cores per chip promises to increase dramatically in the coming years,
making the notion of scalable parallelism directly relevant. Thus, while today’s
multi-core chips offer opportunities for low latency communication among cores,
this characteristic is likely a short-term advantage, as on-chip delays to different parts
of the chip will become increasingly apparent as the number of cores grows. So, we
focus not on exploiting such short-term advantages, but on emphasizing approaches
that work well now and in the future. Of course, multi-core chips present their own
challenges, particularly with their limited bandwidth to off-chip memory and their
limited aggregate on-chip cache. This book discusses these issues as well.

First, we discuss the principles that underlie effective and efficient parallel pro-
grams. Learning the principles is essential to acquiring any capability as sophisti-
cated as programming, of course, but principles are perhaps even more important
for parallel programming because the state of the art changes rapidly. Training that
is tied too closely to a specific computer or language will not have the staying power
needed to keep pace with advancing technology. But the principles—concepts that
apply to any parallel computing system and ideas that exploit these features—lead
to an understanding that is timeless and knowledge that will always be applicable.

But we do more than discuss abstract concepts. We also apply those principles to
everyday computations, which makes the book very practical. We introduce several
parallel programming systems, and we describe how to apply the principles in those
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programming systems. On completion, we expect readers to be able to write paral-
lel programs. Indeed, the final chapter is devoted to parallel programming tech-
niques and the development of a term-long parallel programming capstone project.

Audience

Our intended audience is anyone—students or professionals—who has written suc-
cessful programs in C or similar languages and who describes himself as a program-
mer. It is helpful to have a basic idea of how a computer executes sequential
programs, including knowledge of the fetch/execute cycle and basics of caching.
This book was originally targeted to upper level undergraduate computer science
majors or first year graduate students with a CS undergraduate degree, and it con-
tinues to be appropriate for that level. However, as the book evolved, we reduced the
assumed knowledge and emphasized pedagogy in the belief that if some explana-
tions cover knowledge the reader already has, it’s easy to skip forward.

Organization

Because parallel programming is not a direct extension of sequential programming
with which the reader is doubtless familiar, we have organized this book into four
parts:

Foundations: Chapters 1-3
Abstractions: Chapters 4-5
Languages: Chapters 6-9
Looking Forward: Chapters 1011

To enable you to select intelligently from these parts, we now explain their goals and
content.

Foundations. In Chapter 1 we discover the many issues that parallel program-
mers must address by showing how difficult it is to implement a computation that
is trivial when written for sequential computers. The example focuses our attention
on issues that concern us throughout the entire book, but it also emphasizes the
importance of understanding how a parallel computer operates. Chapter 2 intro-
duces five different types of parallel computers, giving a few details about their
architecture and their ability to scale to a larger size. There are two key conclusions
from the chapter: First, unlike sequential computing, there is no standard architec-
ture. Second, to be successful at spanning this architectural diversity we need an
abstract machine model to guide our programming. And we give one. With the
architectures in mind, Chapter 3 covers basic ideas of concurrency, including
threads and processes, latency, bandwidth, speedup, and so forth, with an emphasis
on issues related to performance. These foundations of Part 1 prepare us for an
exploration of algorithms and abstractions.
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Abstractions. As an aid to designing and discussing parallel algorithms, Chapter 4
introduces an informal pseuodcode notation for writing parallel programs in a
language-independent way. The notation has a variety of features that span various
programming models and approaches, allowing us to discuss algorithms without
bias toward any particular language or machine. To bootstrap your thinking about
parallel algorithms, Chapter 5 covers a series of basic algorithmic techniques. By the
end of Part 2, you should be able to conceptualize ways to solve a problem in paral-
lel, bringing us to the final issue of encoding your algorithms in a concrete parallel
programming language.

Languages. There is no single parallel programming language that fulfills the role
that, say, C or Java plays in sequential programming, that is, a language widely
known and accepted as a baseline medium to encode algorithms. As a result, Part 3
introduces three kinds of parallel programming languages: thread-based (Chapter
6), message-passing (Chapter 7), and high-level (Chapter 8). We cover each lan-
guage well enough for you to write small exercises; serious computations require a
more complete language introduction that is available through online resources. In
addition to introducing a language, each chapter includes a brief overview of related
languages that have a following in the parallel programming community. Chapter 9
briefly compares and contrasts all of the languages presented, noting their strengths
and weaknesses. There is benefit to reading all three chapters, but we realize that
many readers will focus on one approach, so these chapters are independent of one
another.

Onward. Part 4 looks to the future. Chapter 10 covers a series of new, promising
parallel technologies that will doubtless impact future research and practice. In our
view, they are not quite “ready for prime time,” but they are important and worth
becoming familiar with even before they are fully deployed. Finally, Chapter 11
focuses on hands-on techniques for programming parallel machines. The first two
sections of the chapter can be read early in your study of parallel programming, per-
haps together with your study of abstractions in Chapters 4 and 5. But the main goal
of the chapter is to assist you in writing a substantial program as a capstone design
project. In this capacity we assume that you will return to Chapter 11 repeatedly.

Using This Book

Although the content is presented in a logical order, it is not necessary to read this
book front to back. Indeed, in a one term course, it may be sensible to begin pro-
gramming exercises before all of the topics have been introduced. We see the follow-
ing as a sensible general plan:

m Chapters 1,2

® Chapter 11 first section, Chapter 3 through Performance Tradeoffs; begin
programming exercises

® Chapters 4, 5
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® One of Chapters 6-8, programming language chapters
® Complete Chapter 3 and 11, begin term project
m Complete remaining chapters in order: language chapters, Chapters 9, 10

There is, of course, no harm in reading the book straight through, but the advantage
of this approach is that the reading and programming can proceed in parallel.
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We begin our study of parallel programming by building a solid foundation. The
most important goal is to clarify the difference between the sequential and parallel
programming worlds. In sequential computing, operations are performed one at a
time, making it straightforward to reason about the correctness and performance
characteristics of a program. In parallel computing many operations take place at
once, complicating our reasoning about correctness and performance, and as a
result, modifying our programming approach. This part explains the main conse-
quences of this distinction.

Our introduction to parallel computation in Chapter 1 begins by solving a simple
problem of counting the number of occurrences of 3 in a 1-dimensional array. This
trivial task requires four attempts before we create a program with reasonable per-
formance. Even then, we find that our maximum hoped-for speedup can’t be real-
ized. While working through the example, we introduce a series of basic concepts of
parallelism.

Chapter 2 describes the basic architectural features of parallel computers. It is an
interesting topic in its own right, because challenging problems such as interproces-
sor communication have a multitude of potential solutions, and the techniques that
architects use to address them exhibit considerable ingenuity. The main conclusion of
our tour of parallel machines will be that they are extremely different. Because pro-
grammers need to know certain properties of the underlying machine to write qual-
ity programs, it will be necessary to find a machine model that unifies the disparate
architectures. We introduce such a model as the basis for our subsequent study.

With a clear idea of how parallel computers work, Chapter 3 characterizes the many
conceptual issues surrounding parallel performance. We introduce key ideas includ-
ing latency, bandwidth, speedup and efficiency. Certain facets of programming,
such as dependences, are highlighted as being a source of interference among paral-
lel threads. Once these foundational ideas have been introduced, we will be pre-
pared to move on to the algorithmic ideas presented in Part 2.
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Parallel computation is a fundamental technique by which computations can be
accelerated, so the increasing availability of parallel hardware represents a tremen-
dous opportunity. But implementing a parallel solution presents certain conceptual
and programming challenges that this textbook is designed to address. To place the
opportunities and challenges in perspective, this chapter sets the context and intro-
duces basic ideas.

The Power and Potential of Parallelism

Parallelism arises frequently in everyday life. More importantly, parallelism has con-
tributed in many ways to the steady performance improvement in computers over
the past several decades. And now, new opportunities are available. Let’s look
closely.

Parallelism, a Familiar Concept

Parallelism is a familiar concept. Juggling is a parallel task that humans can perform.
House construction is a parallel activity, because several workers can perform sepa-
rate tasks simultaneously, such as wiring, plumbing, and furnace duct installation,
and so on. Most manufacturing—cars, hairdryers, frozen dinners—is performed in
parallel using an assembly line, or pipeline, in which many units of the product are
under construction at once. A call center, where many employees service customers
at the same time, is another organization that applies parallelism.

Although familiar, these forms of parallelism are different. The call center, for exam-
ple, differs from house construction in a fundamental way: Calls are generally inde-
pendent and can be serviced in any order with little interaction among the workers.
In construction, some tasks can be performed simultaneously—wiring and plumb-
ing—while others are ordered—framing must precede wiring. The ordering
restricts the amount of parallelism that can be applied at once, limiting the speed at
which a construction project can complete. The ordering also increases the degree

2
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of interaction among the workers. Manufacturing pipelines are different still,
because they generally have strict ordering constraints with the separate stages often
being performed sequentially; the parallelism comes from having many instances of
the product in the pipeline at once. And juggling is an instance of event-driven par-
allelism, where an event—a falling ball—causes the execution of operations—
catching, throwing—in response to the event. Such familiar forms of parallelism
will also arise in our consideration of parallel computation.

Parallelism in Computer Programs

The main motivation for executing program instructions in parallel is to complete a
computation faster. But most programs today are incapable of much improvement
through parallelism, because they were written assuming that the instructions
would be executed in order, one at a time, that is, sequentially. The semantics of
most programming languages embed sequential execution, and the resulting pro-
grams typically rely so heavily on this property for their correctness that it is rare to
find significant opportunities for parallel execution. To be sure, there are some
opportunities, as when the expression (a+b)*(c+d) must be evaluated; assuming
these are simple variables, the subexpressions (a+b) and (c+d) are independent of
each other, so they can be computed simultaneously. Such opportunities are an
example of Instruction Level Parallelism (ILP).

Indeed, one reason that we have continued to write sequential programs is because
computer architects have been so successful at exploiting parallelism. They have
used the steady improvements in silicon technology to add several kinds of paral-
lelism, including ILP, into sequential processor design. First, architects provide sep-
arate wires and caches for instructions and data. The separation allows instruction
and data memory references to execute in parallel without interfering. Second,
instruction execution is pipelined, fetching and decoding future instructions while
the current instruction is being executed and while the results of past instructions
are still being written to memory. Furthermore, the processors issue (initiate) more
than one instruction at a time, they prefetch instructions and data, they specula-
tively perform operations in parallel even if they cannot be sure that they will be
needed, and they use highly parallel circuits to perform basic arithmetic operations.
In short, modern processors are highly parallel systems.

The key point for programmers is that all of this parallelism has been transparently
available to sequential programs. We call this hidden parallelism. Such parallelism,
together with increasing clock speeds, has allowed each succeeding generation of
processor chip to execute programs faster, while preserving the illusion of sequential
execution. But the prospects for finding new opportunities to apply parallelism
while preserving sequential semantics are becoming limited. More seriously, exist-
ing techniques for exploiting ILP have largely reached the point of diminishing
returns, in terms of both power consumption and performance. So, given current



