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.. PREFACE

"'In this book we intend to establish the éSsential,structurgl identity
of projective geometry and linear algebra. It has, of course, long ‘been
realized that these two disciplines are identical. The evidénce substan-
tiating this statement’is contained in a number of theorems showing that
certain geometrical concepts may be represented in algebraic fashion.
However, it is rather difficult to locate these iundamental cxistence theo-
rems in the literature in spite of their impertance and great usefulhess.
The core of our discussion will consequently be formed by theorems of
just this type. These are concerned with the representation of projective
geometries by linear manifolds, of projectivities by semi-linéar transfor-
mations, of collineations by linear transformations and of dualities by
semi-bilinear forms. These theorems will lead us'to a reconstruction of
the geometry which was the starting point of our discourse within such
(apparently) purely algebraic structures as the endomorphism ring of

the underlying linear manifold or, the full linear group. :

Dimensional restrictions will be imposed only where they are necessary
far the validity of the theorem under consideration, It is, for instance,
well known that most of these existence theorems cease to be true if the
dimension is too low. Thus we will have to exclude the low dimensions
quite often. But finiteness of dimension will have te be assumed only
in exceptional cases; and this will lead us to a group of finiteness criteria.
Similarly we will obtain quite a collection of eriteria for the commuta-
tivity of the field of scalars; the Index lists all of them, Only the charac-

teristic two will be treated in rather a cavalier fashion, being excluded
- from our discussion whenever it threatens te be incenvenient.

From the remarks in the last paragraph it is.apparent that certain
topics ordinarily connected with linear algebra cannot appear in our pre-
* sentation, Determinants are ruled out, since the existence of determinants
enjoying all the desirable properties implies commutativity of the field
of scalars. Matrices will make only fleeting appearances, mainly to show
that they really have no place in our discussion. The invariant concept
is after all that of linear transformation or bilinear form and any choice
of a representative matrix would mean an inconvenient and unjustifiable
fixing of a not-at-all distinguished system of eoordinates.

All considerations of continuity have been excluded from our discussion
in spite of the rather fascinating possibilities arising from the interplay
of algebraic and topological concepts. But the founders of projective
geometry conceived it as the theory of intersection and joining, purely
-algebraic concep{s. Thus we felt justified in restricting our discussion
to topics of an algebraic nature and to show how far one may go by
purely algebraic methods. :



Vi PREFACE

Some sections have been labeled “Appendix” since the topics treated
in them are- not needed for the main body of our discussion. In these
appendices either we discuss-applications to special problems of parti-
cular interest or we investigate special situations of the general theory
in which deeper results may be obtained. No subsequent use will be made
of these so the reader may omit them at his discretion. e

Little actual knowledge is presupposed. We expect the reader to be
familiar with the basic concepts and terms of algebra like group, field,
or homomorphism, but the facts needed will us’ugll‘g’be derived in the form
in which we are going to use them. Ample use will be made of the methods
of transfinite set theory—no metaphysical prejudice could deter the author
from following the only way to a complete understanding of the situation.
For the convenience of the reader not familiar with this theory we have
collected the concepts and principles that we néed in a special appendix
at the end of the book. No proofs are given in this appendix; for these
the reader is referred to the literature. &

No formal exercises are suggested anywhere in the book. But many
facts are stated without proof. To supply the missing arguments wiil give
the reader sufficient opportunity to test his skill. ;

The references are designed almost exclusively to supply “supplement-
ary reading, ' rounding off what has been said or supplying what has
been left unsaid. We have not tried to trace every concept and result
to its origin. What we present here is essentially the combined achieve-
ment of a generation of algebraists who derived their inspiration from
- Dedekind, Hilbert, and Emmy Noether; what little the author may have
added to the work of his predecessors will presumably be clear to the
expert.

We turn finally to the pleasant task of thanking those who helped us:
the editors of this series, in particular Professor S. Eilenberg who read a
draft of the manuscript and gave freely of his advice; Professors Eckmann
and Nakayama and Dr. Wolfson who helped with reading the proofs;

and last but not least my wifs who drew all the figures and read all’ the
procfs, The publishers and their staff helped us greatly and we are ex-

tremely obliged to them for the way they treated our wishes concerning
the book’s make-up. '
REINHOLD BAER

Febenary 1952
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LCHarTER I

Motivation

The objective of this introductory chapter is to put well-known geome-
trical facts and concepts into a form more suitable to the ways of present
day algebraical thinking. In this way we shall obtain some: basic connec-
tions between geometrical and algebraical structures and concepts that
may serve as justifieation and motivation for the fundamental concepts:
linear manifold and its lattice of subspaces which we are going to introduce
in the next chapter. All the other conecepts will be derived from these;
and when introducing these derived concepts we shall motivate them by
considerations based on the discussion of this introductory chapter.

Since what we are going to do in this chapter is doné only for the pur-
poses of illustration and ‘connection of less familiar concepts with such
parts of mathematics as ‘are part of everybody’s experience, we shall
choose. for discussion geometrical structures which are as special as is
compatible with our purposes. Reading of this chapter might be omitted
by all those who are already familiar with the essential identity of linear
algebra and affine and projective geometry. We add a list of works which
elaborate this point.

A SHORT BIBLIOGRAPHY OF INTRODUCTORY WORKS EMPHASIZING THE MUTUAL
INTERDEPENDENCE OF LINEAR ALGEBRA AND (GEOMETRY

L. Bieberbach: Analytische Geometrie. Leipzig, Berlin, 1930,

L. Bieberbach: Projektive Geometrie. Leipzig, Berlin, 1930,

G. Birkihoff and S. MacLane: A Survey of Modern Algebra. New York, 1948,

W. Blaschke: Projektive Geometrie. Wolfenbittel, 1948.

P. Halmos: Finite Dimensional Vecter Spaces. Ann Math. Studies 7 Prmceton,
N. J., 1940, .

L. Heffter and C. Kohler: Lehrbuch der analytlschen Geometrie, Bd. i, 2. Karlsruhe,
Leipzig, 1929.

W. W. D. Hodge and D, Pedoe: Methods of Algebraic Geometry. Cambridge, 1947.

C. C MncDuﬂee Vectors and Matrices. Carus Mathematical Monographs 7. Ithaca,'

. Y., 1943..

0. Schreler and E. Sperner: Einfithrung in die analytische Geometrie. Bd. 1, 2. Leipzig,
Berlin, 1931-1935.

Q. Schreier and E. Sperner: Introduction to Modern Algebra and Matrix Theory.
Translated by M. Davis and M. Hausner, New York, 1951.

B. Segre: Lezioni di geometria moderna. Vol. I: Fondamenti di geometria sopra un
corpo qualsiasi. Bologna, 1948.
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1.1. The Three-Dimensional Affine Space as Prototype
of Linear Manifolds

The three-dimensional real affine space may be defined as the tetality

E [= E,} of triplets (z,y,z) of real numbers x,y,z. This definition is cer-
tamly short, but it has the grave disadvantage of giving preference toa
definite system of coordmates, a defect that wxll be removed 'in due course
of time. -

The triplets: (x,y,z) are usualily called the peints of thls space Apart
from these points we shall have to consider lines and planes, but' we shail
not discuss such concepts as distance or angular measurement as we want
to-adhere to: the affine point of view. It is customary to define a plane as
the ‘totality of points (2,y,z) satisfying a linear equahon ' ]

za + yb+ zc +d=0

where  a,b,¢,d are real numbers and where at least one of sihe numbers
a,b,c is different from :0; and.a line may then be. defined as the inter-
section  of two- different: but intersecting planes. It is known that the
points on a line as those on & plane may be represented in the;soc. para-
metric. form; and we find .it;mere convenient te make these parametnc
representations the startingpoint of our discussion. -
The points.of a line L, may be represented in the form

‘x:—.lu-{—a
L:jy=1t +b
o% ?z:::iw«i—c

where (a,b,c) is some point.onthe line L, where (u,n,w) is a triplet of. real
numbers, not all 0, and where the parameter ¢ ranges oVer all'the real
aumbers. As { ranges ‘over‘all the real numbers, (tu + aq v £ b, tw + ©)
ranges over all the points of the, hne L. To obtain a concise no.ahm for
‘this we let P = (a,b,c) and D = (u, v,w), and then we put

a4 s tw+cy=1ID4 P

Algebraically we have used, and mtmduced two operatwus The ad(ﬂtxon :
of trlplets according to the Tule s

G @Y @Y Y e e

and the (scalar) multiphcation of a tnp!et by a real rmmber according to
the rule ]

1093 z ;

l(x,y,z) = (iz,l0,17). |
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Indxcahng by R(z,y,z) the totality of triplets of the form t(x,y,z), we may
dengte the totality of@mnts on the Ime Lby

Ao == RD+P

where we have 1dent1ﬁed the line L with the set of its points.

Using the operatxons already mtroduced ‘we may now treat planes’in a
similar fashion. Consxder three triplets P = (4,b,c), D' = ('w "'y and
D' ="y W ') Then the totality N of pomts of the form:

tlDI + tIIDN + P
where ‘the parametera t and t" may range independently of each othex'
over qall the real numbers may be designated by - -

N——RD'+RD"+P

If both D’ and D", are the O-triplet [D' = D" (000)—.0], then N
degenerates into the pomt P;if Dor D" is0 whereas not both D’ and D"
are 0, then N degenerates into a line. More generally N will be a line
whenever D' is'a multiple of D" or D" is:a:multiple of D [and not -both
are 0}. But if N'is neither a point nor a line,-then N is actually the totality
of points on a plane;j-or as:weshall'say more shortly: N isa plane. '

in this treatment of lines and planes we have considered the line
L =RD + P as‘theline through the two points P and P <4 D and the
plane N== RD' + RD"'4 P astheplane spanned by the three not coilinear
points P, P D', P 4 D".The question-arises under which circumstances
two (pairs of pointsdetermine the sameline; or two triplets of points spanthe
same. plane, and more generally:how to characterize by internal propentnes
of the set those sets of points which forth a-line or 2 plane.:-

< With this:in mind we introduce the followmg
Dmrmmou The not:vacuous set .S: of pomts in" E is a flock of pamts if
sU ~sV 4 W bélongs to S whenever sis'a real mkmber and U,V Ware
in:§. ] i v

Note that W o 290mge
s(u u‘,u") s(v v+ (w, W) = (su sv+w,su —~30" - su ~sp” + w').

A set consisting of one. pomt only certamly has this property “and the

- reader will find it easy to. vemfy that lines and planea too are ﬂocks of

points. Tr ivially the totahty of points in Eisa ﬁock Consxder now, conver—

sely some ﬂock S of pomts This flock qontams at least one pomt P, If F

is tlge only pomt in S, then we have ﬁmshed our argument Assume there-

fore that S contains a second, pomt Q. 1t folIoWs ,from thQ ﬂoc propet:;y
that S contams the. ‘whole, line - sfoeie .

L=P + R{P Q)

-—note that P - Q 5= (0,0,0). If this line exhausts S, then we have again
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reached our g()al and thus we ma§ ‘assume that S contains a further pomt K,
not on L. It follows from the flock pmperty ‘that"S contains the totality

N= P+R(Q P)+R(K P);

and N is a, plane, since K is not on L. If N exhausts S, then again we'
have achleved our end If, however, there exists a pomt M in S, but not
in N, tien one may prove that S = E [by realizing that the four poifits
P,Q,K,M are “linearly 1ndependent ” and that therefore every further
point “depends” on them]; we leave the details to the reader.

<Now wemay exhibit those features of the space E whichare ‘‘coordinate-
free.”” The space E consists of elements, called points. These points may be
added and subtracted [P + Q] and they form an additive abelian group
with respect to addition. There exists furthermore a scalar multnphcatlon
rP of real numbers r by pomts P with the properties:'

 + s)P = 1P + sP,i(P + Q) = #P + 1Q, (rs)P =P =P

There exist furthermore distinguished sets of points; called flocks in the
preceding discussion; they -are characterized by ‘the closure property::

If U,V,W are in the flock F, and xfr is a‘real number, then rU —rV.+W
belongs ‘to F:

Affine ‘geometry may then be deﬁned (in: a somewhat prehmmary
fashion) as the study of the flocks in' the space E.

‘Among:the flocks those are-of special interest which contain the erigin
(the'nul element with: respect to the addition of- points) It is easy to see

that a set S of points is a flock ¢ontaining the origin: if; and only if, . .
" (@) S contains P 4 @Q-and P — Q whenever S tontains P andQ, and

(b) S contains rP whenever r is‘a real number-and:P isia point in S.
In other words the flocks through the origin:are exactly the subsets of E
which, are closed under addition, subtraction and multiplication or, as
we shall always say, the flocks through the origin are exactly the sub-
spaces of E.

If Tisa subspace of E (closed under addition, subtraction and multl-
ph"atxon) and if P is a point, then T -+ P is a flock. If S is a flock, then the
totality 7" of points of theform P-Q for P and Q in Sisa subspace, and S
has the form S = T '+ P for some P in S, This shows that we know all
the flocks once we know the subspaces, and so in a way it ‘may suffice to
investigate the subspaces of E. But the observation has been made that
the totality of lines and planes through the origin of a three-dimensional
affine space has essentially the same structure as the real projective
plane; and this remark we want to substantiate in the next section.
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THE REAL PROJEGTIVE PLANE 5

1.2.. The Real Projective Plane as Prototype of the Lattice
“‘of Subspaces of a Linear Manifold

* 'We begin by stating the following definition of the real projective plane
which has the advantage of being short and in accordance with-customary
terminology, but has the disadvantage of g;vmg preference to a particular

system of coordinates.

Every triplet (x42,,x;) of real
numbers, not all 0, represents a
point, and every point may be re-
-presented in this fashion.

The triplets (xo-xvxa) and (yosyuyz)
represent the same point if, and
only if, there exists a number ¢ £ 0

* Every triplet. (uguy,u,) of .real
numbers, not all 0, represents a line,
and every line. may be represented

.. in this fashion.

The triplets (ug,u,,u,,) and (v4,0,,0)
represent the same line if, and -
only if, there exists a number d 5 0

such that & = cys for i = 0,1,2.  'such'that u; = oid for i = 0,1,2.

The pomt represented by (xo,x,,:t,) is on the line represented by (u,,,u,,u,)
if, and only if,

Tolly + Tylly + Ty = 0. ;

If ‘we use notations similar to those used in I.1, then we may say that
the triplets z and y represent ‘the same point if, and only if, z = ¢y, and
that the triplets u and v represent the same line if, and only if, u = vd.
The principal reason for writing the scalar factor d on the right will become
apparent much later [II. 3]; at present we can only say that some of our
formulas will look a little better. If we define the scalar product of the
triplets z and u by the formula

2
zu = ¥

i=0
then the incidence relation “point x on line u” is defined by zu = 0. We
note that xu =0 implies (cz)u =0 and x(ud) = 0.

If z is a triplet, not 0, then the totality of triplets cx with ¢ 5= 0 repre-
sents the same point, and thus we may say without any danger of confu-
sion that Rz is a point. Likewise uR may be termed a line whenever u is
a triplet not Q.

If Rz is a point, then this is a set of triplets closed under addition and
multiplication by real numbers. If uR is a line, then we may consider the
totality S of triplets z such that xu = 0. It is clear that S too is closed
under addition and multiplication by real numbers; and that S is composed

A
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of all the points Rz on the line uR. Thus we might identify the line uR
with the totality S. .

But ‘now we ‘ought to  remember that' the -totality of tripleis
i = (TotasTy) IS exactly  the three-dimensional affing space discussed in
1.1, and that the points Rz and the lines S, discussed in the preceding
paragraph, are just what. we- called. in 1.1 sabspaces of the; three-
dimensional affine space, That all subspaces—apart from 0:and E—are just
points and lines in.this projective sense, the reader will be abie to verify
without toe much trouble. Once he has done this, he will realize the validity
of the contention we made at the end of L1:

The real projective plane is essentially the same as the system of sub-
spaces (= llocks through the origin) of the three-dimensional real affine
space. s ' 2,
Consequently all our algebraical discussion of lit;éér manifolds’ admits
of two essentially different geometrical interpretations: the affine inter-
pretation where the elements (often called vectors) are the basic atoms of
discussion and the projective interpretation where'the subspaces are the
elementary particles. We shall make use of boih interpretations feéling
free to use whichever is the more suitable one in-a special situation, but in
general we shall give preference to projective ways of thinking.: .

The real affine space and the real projective plane are just two particu-
larly interesting members in a family of structures which may be obtained
from these special structures by generalization in two directions: first,
ali limitations as to the number of dimensions will be dropped so that. the
dimension of the spaces under consideration will be permitted to take any
finite and infinite value (though sometimes we will have to exclude the
very low dimensjons from. our discussion); se_pé)"n,diy we wlll substitutg‘_fé)r
ihe reals as field of coordinates any field whatsoever whether finite or
infinite, whether commutative or not. Butin all these generalizations the
reader will be wise to keep in mind the geometrical picture which we
iried to indicate in this introductory chapter.
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The Basic ’Praperties of a Linéé.r ‘Manifold

In this chapter the foundatxons will be laid for all the following investi-
gations. The concepts introduced here and the theorems derived from them
will be used almost continuously. Thus we prove, the principle of comple—
mentation and the existence of a basis which contains a basis of a given
subspace; we skow that any two._bases contain the same number of ele-
ments which number (finite or mﬁmte) is the rank of the space. It is then
trivial to derive the fundamental rank jidentities, which contain as a
special case the theory of systems of homogeneous linear equations, as we
show in Appendix I, and to relate the rank of a space with the rank of
its adjoint space (= space of hypezplanes)

iL1. Dedekind’s Law and. the Princi;ﬁe of Complementation

A linear manifold is a pair (F, A)'consistingof a (not necessarily commu-
tative) field F and an additive abelian group A such that the elements in F
operate on the elements in A in a way sukject to the following rules:

(a) ~Iifisan element inF and aan eiementm iA, then their preduct
fa is'a uniquely determined-éiement i Auvill 1

By on (fine f”)a = flabefSal I(a s a”) = fa + fa’ for I»f’.f” in K
. and a,0a’ in ‘Avo ot 5

(¢ la= aforevery ain A {where 1 deslgnates the identity element
in F}. anl

(@) ([’/”)a = f'(f"a) forf J ' in F and a.in- A el e

From these rules one deduces readily such further rules as

(¢) ' '0@==1f0== 0 for jiin F-and a in'A‘[where the first .0 is the null
element in F whereas the sewnd»and‘ thtrd 0:stand for the null enement
in Al g 2 ? Yo
(- (= f)a -.4(-, a)- —(ia) for f in/ I and a in A

ReMARK oN TBRMINoLoGY: It should be:moted that we use the word
““field” herein exactly the same fashion;asiother authers use terms like
division ring, skew field, and sfield. Thus a field is.a system of at least-two
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elements with two compositions, addition and multiplication. With res-
pect to addition the field is a commutative group; the elements, not 0,
in the field form a group, which need not be commutative, with respect
to multiplication; and addition and multiplication are connected by the
distributive laws. A good example of a field which is not commutative is
provided by the real quaternions; see, for mstance, Blrkhoﬁ—MacLane
[1], p. 211 for a discussion.

In a linear ' manifold ‘we have two basic classes of elements: those in the
additive group A (the vectors) and those in the field F (the scalars). To
keep these two classes of elements apart it will sometimes prove conve-
nient to refer to the ‘¢lements in the field F'as'to “numbers in F,”
terminology that seems to be justified by the fact that numbers i in'F may
be added, subtracted, multlplxed and divided.

Instead of linear manifold we shall use expressions like F-space A, ete;
and we shall often say that F is the field of coordinates of the space A.
Note that in the literature also terms like F-group A, F-modulus A
vector space A over F are used.

A linear submanifold or subspace of (F,A) is a non-vacuous subset S
of A meetmg the following requirements:

(9 s-s" belongs to S ‘whenever s',s" are in S; and fs belongs
to S whenever sisin S and f in F.

If we indicate as usual by X + Y-and X - Y respectlvely the sets of -
all the sums» + y and - y with 2 in X and yin Y, and by &X‘the tota-
lity of products gz for g in G and r in X, then one sees easily the equi-
valence of (q) with the following conditions: ]

S=S+8=5-5S=FS.

We'note a few simple examples of such linear submanifolds: 0; the
.points Fp with p == 0; the lines Fp + Fgq fwhere Fp and Fq are distinet
points}; the planes L 4 Fp where L is a line and Fp is a point, not part
of L. A justification for these terms, apart from the reasons already given
in Chapter I, will be given in the next section.

Instead of linear submanifold we may also use terms like subspace,
F-subgroup and admissible subspace.

Our principal objective is the study of the totality of subspaces of a
given linear manifold. This totality hasa certain structure, since subspaces
are connected by a number of relations.

CoNTAINEDNESS OR INcLusiON: If S and T are subspaces, and if every
element in S belongs to T, then we write §'<-T and say that S is part
of T or Sison T or S'is contained in 7. If S< 7T, but S5 T, then we
write S < T. If H contains K and K contains L, then: & may be said to
be *between’ H and L. ¥
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InTERsECTION: If S and T are subspaces, thén S n T-is the-set of ‘all’
the elements which- belong to' hoth S and T\ It is readlly ‘seen " that
S'n T is a subspaee'too. ¢ v

If @ is a set of ‘subspaces, then we-define as the intersection: of the
subspaces in ¢ the set of all the elements which belong to eacly: of ‘the
subspaces in ®.'This intersection is again a subspace, and will be indicated
in a variety of ways. For instance, if ¢ consists only of a finite number of
subspaces 8, - - -, S,, then theirintersectionwill be written as S1 Moes e Sy;
if the subspaces in ¢ are indicated by subscripts: & == [.. ] then

we write the intersection as n S, and so on.

Instead of intersection the term cross cut is used too

Sum. If S and T -are subspaces, then their sum S + T consists of all
the elements s 4 f with s in S and t in T. One verifies easily that S+ T
too is a subspace, the subspace “spanned” by S and T.

If 83,-++, Sy are a finite number of subspaces, then their sum

CRVESNIT IR Y

f==1

consists of all the sumis s + ..% + sa = 2 $¢' with s in S;. Again itis
=1

clear that the sum of the S; is a subspace; the subspace spanned by the:S;.

If finally # is any set of subspaces; then their sum consists of all the

sums $; + - .- + 5 Where each s; belongs to some subspace S'in ®. This

again is a subspace which may be ‘indicated in a variety of ways, like

ZS Note that only finite sums of elements in A may be formed, though

we may form the sum of an infinity of subspaces Furthermore it should
be verified that the definition of the sum of a finite number of subspaces
is a special case of our definition of the sum of the subspaces in ®." "

Intersectlon and sum of’ subspaces are connected by the following rule
which is easnly verified:

The sum of the subspaces in @ is the intersectlon of all the subspaces
which contain every subspace in ®; the intersection of the subspacesin &
is the sum of all the subspaces which are contained in every subspace in .

We turn now to the derivation of more fandamental relations.

Dodokind’ Law: If R, S, T are subspaces, and if R S, then

SA(R+T)= R+(SnT) :
Proor: ‘From SN T<.§ and RK R+ T and R S we deduce
R+A(SnaDHLSAn(R+ D).
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If ‘conversely the element s belongs to & n (R + 7), then s=r + ¢
with r in R and ¢ in 7. From R~ Swe infer now that s - r belongs to S.
Hence! = s — r belongsto S n T so thats==r + t belengs to R+ (S n T).
Consequently S n (R 4 T) < R + (§ n 7); and this proves the desired
equation. [ fia : ] i aG ke

The reader should cemstruct examples which show.that the above,
equation fails to hold without the hypothesis R < S o ¢

Two. more concepts are needed for the enunciation of the next law. .

QuorieNT Seaces: If M is a subspace, then we define congruence
meodulo M by the following rule: ;

The elements z and y in A are congruent modulo M, in syinbols:
« = y modulo M, if their difference x - y belongs to M.

One verifies that congruence modulo M is reflexive, symmetric, and
transitive; and thus we may divide A into mutually exclusive classes of
congruent elements. Congruences may be added and subtracted, since
& = y modulo°M and z’= y' modulo M imply x + z' =y + y' modulo M
and 2 -2 = y -y modulo M. Since for every f in F we may deduce
from z = y modulo M the congruence fr = jy modulo M, we may mul-
tiply congruences by elements in F.

Complete classes of congruent elements modulo M are often called
cosets modulo M. The totality of these cosets modulo M we designate
by A/M. Addition and subtraction of cosets modulo M is defined by the
corresponding operations with the elements in the cosets; and the product
fX of fin F by X in A/M is just the totality of all fr for « in X, unless
f = 0 in which case we let fX = 0X = M = 0. Then it is clear from the
preceding discussion that (F,A/M) is likewise a linear manifold. It may
be said that the F-space A/M arises from the F-space A by substituting
congruence modulo M for the original equality.

If the subspace S of A contains M, then the elements in S form complete
classes of [modulo M} congruent elements. We may form S/M; and one
sees easily that S/M is a subspace of A/M, ‘

Conversely let T be some subspace of A/M. Every element in T is a
class of congruent elements in A; and thus we may form the set 7* of
all the elements in A which belong to some class of congruent elements
in T. One verifies that T* is a subspace of A which contains M and which
satisfies T*/M = T. RS ; .

The reader ought to discuss the example where A is the real projective
plane and M some point in it. Then the subspaces of A/M correspond
essentially to the lines of A which pass through the point M; and their
totality has “the structure of a line.” '

AN’ IsoMORPHISM OF THE F-SPACE A uproN THE F-SPAce Bis aone-
to-one correspondence ¢ mapping the elements in' A upon the elements
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in B in such a way that
As =B, (@ ¥ b)ys ="as + bc,_(/a)c = f(as) "

for a,bin A and fin F.—It is clear that the inverse s may be formed, and
that ¢! is an iscmorphism of B upon A.

This concept of isomorphism, may be applied in particular upen sub-
spaces and their quotient spaces. .

The existence of an isomorphism between the F-spaces A aund B we
indicate by saying that A and B are isomorphic and by writing A ~ B,
Instead of isomorphism we are going to say usually ‘““linear transforma-
tion.” Thus linear transformation signifies what in classical terminology
is called a non-singular linear transformation. The concept of isomor-
phism is going to be extended later when we introduce the more coinpre-
hensive concept of semi-linear transformation [III.1].

Isomorphism Law: If S and T are subspaces -of the F-space A, then

(S§ + IS~ T[S n 7).
Proo¥: Every element x in S + 7 has the form x=35 +{ with sin §
and { in T. Clearly z = ¢ modulo S. Thus every element X in (§+T7)/S
contains elements in T; and we may form the non-vacuous intersection
X n T of the sets X and 7. If o' and «’ belong both to X n T, then
2 = 2z’ modulo S so that &' — " belongs to Sn T; and now one verifies
that X n T is an element in T/(Sn T). Py

If Y is an element in T/(Sn T), then S + Y is easily seen to be an
element in (S + T)/S. Since » :

X=S4E(XnaT) forXin(S+ T)S,
Y=Tn(+Y) forYinT/(SnT),

we see that the mappings: X - Xn T and Y — S + Y are reciprocal
mappings between T/(Sn T) and (S + T)/S; and thus they are in parti-
cular one-to-one correspondences between the two quotient spaces. That
they are actually isomorphisms is now quite easily verified (so that we
may leave the verification to the reader). This completes the proof of the
Isomorphism Law.
Lemma: The join of an ordered set of subspaces is a subspace..

Proor: If @ is an ordered set of subspaces of A, and if.S = T are distinet
subspaces in ®, then one and only one of the relations S<< T and T<<S
is valid. Denote by J the join of all the subspaces in ¢ so thai an element
belongs to J if, and only if, it belongs to at least one subspace in @, 1f &
and y are elements in J, then there exist subspaces X and Y in & such
that z is in X and y in Y. It follows from our hypothesis that one of these
subspaces contains the other one, say X . Y. Then = and y and con-
sequently z — y are in Y so that z - y belongs to J. Since z is in X, so



