v ot s wssn (GHNR) S
~ DATA STRUCTURES & ALGORITHM
—1 MARK ALLEN WEISS

HIREHS5HEZTIT N
C++ B ciom §

Data Structures
& Algorithm
Analysis in
C++

Second Edition

Mark Allen Weiss
Florida International University

BEXFHMBRH

(7)) #MEFI1S8 5

Data Sturctures & Alogorithm Analysis in C++ 2nd ed.
Mark Allen Weiss

Copyright © 1999 by Addison Wesley Longman, Inc.
Original English Language Edition Published by Addison Wesley Longman, Inc.

All Rights Reserved.
For sale in Mainland China only.

AP BEEHE HRERARBE R FHREEPEEN (FEE BT
BIX . WM EXMEEMX) BERHER. KIT.
RELREBEIFR, FHRUEMARX A RESHIMES .

EHHEWE LR E LA RS, THREEFEHE.
LR BEEENEREES: BF: 01-2002-1661

H 4: Data Structures & Algorithm Analysis in C++ (2nd ed.)

#¢ &: Mark Allen Weiss

HERE: HHERFEHBM dERERREEHKE, H% 100084)
http:// www.tup.tsinghua.edu.cn

BRI : AE3 4R Lt ek

RITH: HHEPIERIEILREITH

A 787X9601/16 ENFK: 38

R: 20029 HE 1R 2002 E 9 A% | IREVRY

+ 5. ISBN 7-302-05702-8/TP * 3362

¥: 0001~4000

#ir: 54.00 7T

R B

A 21 g, HALENSH. BRURGERANZEFHEEMEE. THH
HULESERX AL K19 3F. #RAKERERNAL, ERBERFTRERE. &
HHE, FAEFRERALNIY, DAZIGEEN. HTRERSHENEM
BRI, AT MREMEOER SR, BEHEEXHRERERERAEMRR
M.

WA 1996 EFF R, BEMELHMAE A1, RENBRT “K¥
HHAHMEAR GEBER” F—RI5IHES, 28 TENEENROHE. B
A 21 e, BINFEXNBRERSBEHMEERSONE, EOFOER L, #—
B EBAE, SREEFARSY, —mBREREE X ERREER TRERRA
MEFRETEHNBE ORI ABMIE LB URKES LS, ARFE “K¥
WENBHENEZHM. BB RS RO, URIEE. EUIBREE Kot
HAARINEHM. BEHBRANBELRBRARN. EFEEREER. BEFRARIE
HESMHEHEENRBEM, URRIE “KEHENHTENZELEHN . HB R
5l CREDRO” MAEY, EEERRMENTE.

HHEHS SR E BREE
2002.3

Preface

Purpose/Goals

The second edition of Data Structures and Algorithms Analysis in C++ describes
data structures, methods of organizing large amounts of data, and algorithm
analysis, the estimation of the running time of algorithms. As computers become
faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency,
since inefficiencies in programs become most obvious when input sizes are large.
By analyzing an algorithm before it is actually coded, students can decide if a
particular solution will be feasible. For example, in this text students look at specific
problems and see how careful implementations can reduce the time constraint
for large amounts of data from 16 years to less than a second. Therefore, no
algorithm or data structure is presented without an explanation of its running time.
In some cases, minute details that affect the running time of the implementation are
explored.

Once a solution method is determined, a program must still be written. As
computers have become more powerful, the problems they must solve have become
larger and more complex, requiring development of more intricate programs. The
goal of this text is to teach students good programming and algorithm analysis skills
simultaneously so that they can develop such programs with the maximum amount
of efficiency,

This book is suitable for either an advanced data structures (CS$7) course or a
first-year graduate course in algorithm analysis. Students should have some knowl-
edge of intermediate programming, including such topics as pointers, recursion, and
object-based programming, and some background in discrete math.

Approach

Although the material in this text is largely language independent, programming
requires the use of a specific language. As the title implies, we have chosen C++ for
this book.

C++ has emerged as the leading systems programming language. In addition to
fixing many of the syntactic flaws of C, C++ provides direct constructs (the class
and template) ro implement generic data structures as abstract data types.

PREFACE

The most difficult part of writing the book was deciding on the amount of C++
to include. Use too many features of C++, and one gets an incomprehensible text;
use too few and you have little more than a C text that supports classes.

The approach we take is to present the material in an object-based approach.
As such, unlike the first edition, there is no use of inheritance in the text. We
use class templates to describe generic data structures. We generally avoid esoteric
C++ features, and use the vector and string classes that are now part of the C++
standard. Using these first-class versions, instead of the second-class counterparts
that were used in the first edition, simplifies much of the code. Because not all
compilers are current, we provide a vector and string class in Appendix B; this is
the class that is actually used in the online code. Chapter 1 provides a review of the
C++ features that are used throughout the text.

Complete versions of the data structures, in both C++ and Java, are available
on the Internet. We use similar coding conventions to make the paraliels between
the two languages more evident. The code has been tested on UNIX systems using g++
(2.7.2 and 2.8.1) and SunPro 4.0 and on Windows95 systems using Visual C++ 5.0
and 6.0, Borland C++ 5.0, and Codewarrior Pro Release 2.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only
way to be comfortable with recursion is to see good uses over and over. Therefore,
recursion is prevalent in this text, with examples in every chapter except Chapter 5.
Chapter 1 also includes material that serves as a review of basic C++. Included is a
discussion of templates and important constructs in C++ class design.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic
analysis and its major weaknesses. Many examples are provided, including an
in-depth explanation of logarithmic running time. Simple recursive programs are
analyzed by intuitively converting them into iterative programs. More complicated
divide-and-conquer programs are introduced, but some of the analysis | solving
recurrence relations) is implicitly delayed until Chapter 7, where it is performed in
detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding these
data structures using ADTs, fast implementation of these data structures, and an
exposition of some of their uses. There are almost no complete programs, but the
exercises contain plenty of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external
search trees (B-trees). The UNIx file system and expression trees are used as examples.
AVL trees and splay trees are introduced. More careful treatment of search tree
implementation details is found in Chapter 12. Additional coverage of trees, such as
file compression and game trees, is deferred until Chapter 10. Data structures for an
external medium are considered as the final topic in several chapters.

Chapter $ is a relatively short chapter concerning hash tables. Some analysis is
performed, and extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is
additional material on some of the theoretically interesting implementations of

PREFACE

priority queues. The Fibonacci heap is discussed in Chapter 11, and the pairing heap
is discussed in Chapter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and
analysis. All the important general-purpose sorting algorithms are covered and
compared. Four algorithms are analyzed in detail: insertion sort, Shellsort, heapsort,
and quicksort. External sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time.
This is a short and specific chapter that can be skipped if Kruskal’s algorithm is not
discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not
only because they frequently occur in practice but also because their running time is so
heavily dependent on the proper use of data structures. Virtually all of the standard al-
gorithms are presented along with appropriate data structures, pseudocode, and anal-
ysis of running time. To place these problems in a proper context, a short discussion
on complexity theory (including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving
techniques. This chapter is heavily fortified with examples. Pseudocode is used in
these later chapters so that the student’s appreciation of an example algorithm is not
obscured by implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters
4 and 6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the k-d tree, and the pairing heap.
This chapter departs from the rest of the text by providing complete and careful
implementations for the search trees and pairing heap. The material is structured
so that the instructor can integrate sections into discussions from other chapters.
For example, the top-down red-black tree in Chapter 12 can be discussed under
AvL trees (in Chapter 4). Appendix A discusses the Standard Template Library and
illustrates how the concepts described in this text are applied to a high-performance
data structures and algorithms library. Appendix B describes an implementation of
vector and string.

Chapters 1-9 provide enough material for most one-semester data structures
courses. If time permits, then Chapter 10 can be covered. A graduate course on
algorithm analysis could cover Chapters 7-11. The advanced data structures analyzed
in Chapter 11 can easily be referred to in the earlier chapters. The discussion of
NP-completeness in Chapter 9 is far too brief to be used in such a course. Garey and
Johnson’s book on NP-completeness can be used to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material
is presented. The last exercises may address the chapter as a whole rather than a
specific section. Difficult exercises are marked with an asterisk, and more challenging
exercises have two asterisks.

A solutions manual containing solutions to almost all the exercises is avail-
able online to instructors from the Addison Wesley Longman Publishing Company.
Instructors should contact their Addison-Wesley local sales representative for infor-
mation on the manual’s availability.

vili PREFACE

References

References are placed at the end of each chapter. Generally the references either
are historical, representing the original source of the material, or they represent
extensions and improvements to the results given in the text. Some references
represent solutions to exercises.

Code Availability

The example program code in this book is available via anonymous ftp at
ftp.awl.com. It is also accessible through the World Wide Web; the URL is
http://www.awl.com/cseng/ (follow the links from there). The exact location of
this material may change.

Acknowledgments

Many, many people have helped me in the preparation of books in this series. Some
are listed in other versions of the book; thanks to all.

As usual, the writing process was made easier by the professionals at Addison
Wesley Longman. I'd like to thank my editor, Susan Hartman; associate editor,
Katherine Harutunian; and production editor, Pat Unubun. I’d also like to thank
Kris Engberg and her staff at Publication Services for their usual fine work putting
the final pieces together.

I would like to thank the reviewers, who provided valuable comments, many
of which have been incorporated into the text. For this edition, they are Phillip T.
Conrad (Temple University), Robin Hill (University of Wyoming), Bob Robinson
(University of Georgia), Gurdip Singh (Kansas State University), Bernard M. Wax-
man (Southern linois University at Edwardsville), and William W. White (Southern
Illinois University at Edwardsville).

Finally, I'd like to thank the numerous readers who have sent e-mail messages
and pointed out errors or inconsistencies in earlier versions. My World Wide Web
page http://www.cs.fiu.edu/~weiss will contain updated source code (in C++, C,
and Java), an errata list, and a link to submit bug reports.

MAW.
Miami, Florida

Contents

Chapter 1 Introduction 1

1.1.
1.2.

1.3.

1.4.

1.5.

1.6.

What’s the Book About? 1

Mathematics Review 3

1.2.1. Exponents 3

1.2.2. Logarithms 3

1.2.3. Series 4

1.2.4. Modular Arithmetic 5

1.2.5. The P Word 5

A Brief Introduction to Recursion 7

C++ Classes 11

1.4.1. Basic class Syntax 12

1.4.2. Extra Constructor Syntax and Accessors
1.4.3. Separation of Interface and Implementation
1.4.4. vector and string 18

C++ Details 19

1.5.1. Pointers 19

1.5.2. Parameter Passing 21

1.5.3. Return Passing 22

1.5.4. Reference Variables 23

1.5.5. The Big Three: Destructor, Copy
Constructor, operator= 23

1.5.6. The World of C 28
Templates 30

15

CONTENTS

1.6.1. Function Templates 30
1.6.2. Class Templates 32
1.6.3. Object, Comparable, and an Example 34

1.7. Using Matrices 36

1.7.1. The Data Members, Constructor, and
Basic Accessors 36

1.7.2. operator[] 36

1.7.3. Destructor, Copy Assignment, Copy Constructor
Summary 37

Exercises 37

References 39

Chapter 2 Algorithm Analysis 41

2.1,
2.2,
2.3.
24,

Mathematical Background 41
Model 44

What to Analyze 44

Running Time Calculations 47
2.4.1. A Simple Example 47
2.4.2. General Rules 48

2.4.3. Solutions for the Maximum Subsequence
Sum Problem 50

2.4.4. Logarithms in the Running Time 56
2.4.5. Checking Your Analysis 59

2.4.6. A Grain of Salt 61

Summary 61

Exercises 62

References 67

Chapter 3 Lists, Stacks, and Queues 69
3.1. Abstract Data Types (ADTs) 69
3.2. The List ADT 70

3.2.1. Simple Array Implementation of Lists 70

37

3.3.

3.4.

3.2.2. Linked Lists 71

3.2.3. Programming Details 72

3.2.4. Memory Reclamation and the Big Three = 78
3.2.5. Doubly Linked Lists 79

3.2.6. Circular Linked Lists 80

3.2.7. Examples 81

3.2.8. Cursor Implementation of Linked Lists 86
The Stack ApT 93

3.3.1. Stack Model 93

3.3.2. Implementation of Stacks 93

3.3.3. Applications 100

The Queue ADT 110

3.4.1. Queue Model 110

3.4.2. Array Implementation of Queues 110
3.4.3. Applications of Queues 114

Summary 115

Exercises 116

Chapter 4 Trees 121

4.1.

4.2.

4.3.

Preliminaries 121

4.1.1. Implementation of Trees 122

4.1.2. Tree Traversals with an Application 123
Binary Trees 127

4.2.1. Implementation 127

4.2.2. An Example: Expression Trees 128

The Search Tree ADT—Binary Search Trees 131
4.3.1. find 134

4.3.2. findMin and findMax 134

4.3.3. insert 136

4.3.4. remove 137

4.3.5. Destructor and Copy Assignment Operator 139
4.3.6. Average-Case Analysis 140

ii CONTENTS

4.4, AVL Trees 143
4.4.1. Single Rotation 145
4.4.2. Double Rotation 148
4.5. Splay Trees 155
4.5.1. A Simple Idea (That Does Not Work) 155
4.5.2. Splaying 157
4.6. Tree Traversals (Revisited) 163
4.7. B-Trees 165
Summary 170

Exercises 170
References 177

Chapter 5 Hashing 181

5.1. General Idea 181

5.2. Hash Function 182

5.3. Separate Chaining 184

5.4. Open Addressing 188
5.4.1. Linear Probing 189
5.4.2. Quadratic Probing 191
5.4.3. Double Hashing 196

5.5. Rehashing 197

5.6. Extendible Hashing 200
Summary 203
Exercises 204
References 207

Chapter 6 Priority Queues (Heaps) 211
6.1. Model 211
6.2. Simple Implementations 212
6.3. Binary Heap 213
6.3.1. Structure Property 213
6.3.2. Heap-Order Property 214

6.4.

6.5.
6.6.

6.7.
6.8.

CONTENTS

6.3.3. Basic Heap Operations 215
6.3.4. Other Heap Operations 219
Applications of Priority Queues 223
6.4.1. The Selection Problem 223
6.4.2. Event Simulation 224

d-Heaps 225

Leftist Heaps 226

6.6.1. Leftist Heap Property 226

6.6.2. Leftist Heap Operations 227
Skew Heaps 233

Binomial Queues 236

6.8.1. Binomial Queue Structure 236
6.8.2. Binomial Queue Operations 237
6.8.3. Implementation of Binomial Queues 240
Summary 246

Exercises 246

References 251

Chapter 7 Sorting 253

7.1.
7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

Preliminaries 253

Insertion Sort 254

7.2.1. The Algorithm 254

7.2.2. Analysis of Insertion Sort 254

A Lower Bound for Simple Sorting Algorithms 255
Shellsort 256

7.4.1. Worst-Case Analysis of Shellsort 257
Heapsort 260

7.5.1. Analysis of Heapsort 263

Mergesort 264

7.6.1. Analysis of Mergesort 266
Quicksort 269

7.7.1. Picking the Pivot 271

xiii

CONTENTS

7.7.2. Partitioning Strategy 271

7.7.3. Small Arrays 274

7.7.4. Actual Quicksort Routines 274

7.7.5. Analysis of Quicksort 275

7.7.6. A Linear-Expected-Time Algorithm for Selection 279
7.8. Indirect Sorting 281

7.8.1. vector<Comparable *> Does Not Work 283

7.8.2. Smart Pointer Class 283

7.8.3. Overloading operator< 284

7.8.4. Dereferencing a Pointer with * 284

7.8.5. Overloading the Type Conversion Operator 284

7.8.6. Implicit Type Conversions Are Everywhere 285

7.8.7. Dual-Direction Implicit Conversions Can
Cause Ambiguities 285

7.8.8. Pointer Subtraction Is Legal 286
7.9. A General Lower Bound for Sorting 286
7.9.1. Decision Trees 286
7.10.Bucket Sort 288
7.11.External Sorting 289
7.11.1. Why We Need New Algorithms 289
7.11.2. Model for External Sorting 289
7.11.3. The Simple Algorithm 290
7.11.4. Multiway Merge 291
7.11.5. Polyphase Merge 292
7.11.6. Replacement Selection 293
Summary 294
Exercises 295
References 300

Chapter 8 The Disjoint Set ADT 303
8.1. Equivalence Relations 303
8.2. The Dynamic Equivalence Problem 304

8.3.
8.4.
8.5.
8.6.

8.7.

Basic Data Structure 306

Smart Union Algorithms 309

Path Compression 312

Worst Case for Union-by-Rank and Path Compression
8.6.1. Analysis of the Union/Find Algorithm 314
An Application 320

Summary 322

Exercises 322

References 324

Chapter 9 Graph Algorithms 327

9.1.

9.2.
9.3.

9.4.

9.5.

9.6.

9.7.

Definitions 327

9.1.1. Representation of Graphs 328
Topological Sort 330

Shortest-Path Algorithms 333

9.3.1. Unweighted Shortest Paths 335
9.3.2. Dijkstra’s Algorithm 339

9.3.3. Graphs with Negative Edge Costs 347
9.3.4. Acyclic Graphs 348

9.3.5. All-Pairs Shortest Path 351
Network Flow Problems 351

9.4.1. A Simple Maximum-Flow Algorithm 352
Minimum Spanning Tree 356

9.5.1. Prim’s Algorithm 356

9.5.2. Kruskal’s Algorithm 360
Applications of Depth-First Search 362
9.6.1. Undirected Graphs 362

9.6.2. Biconnectivity 363

9.6.3. Euler Circuits 368

9.6.4. Directed Graphs 371

9.6.5. Finding Strong Components 373
Introduction to NP-Completeness 374

313

CONTENTS

9.7.1. Easy vs. Hard 375

9.7.2. The Class NP 376

9.7.3. NP-Complete Problems 377
Summary 379

Exercises 379

References 386

Chapter 10 Algorithm Design Techniques 391
10.1.Greedy Algorithms 391

10.1.1. A Simple Scheduling Problem 392

10.1.2. Huffman Codes 395

10.1.3. Approximate Bin Packing 401
10.2.Divide and Conquer 409

10.2.1. Running Time of Divide and
Conquer Algorithms 410

10.2.2. Closest-Points Problem 412

10.2.3. The Selection Problem 416

10.2.4. Theoretical Improvements for
Arithmetic Problems 419

10.3.Dynamic Programming 423

10.3.1. Using a Table Instead of Recursion 423

10.3.2. Ordering Matrix Multiplications 425

10.3.3. Optimal Binary Search Tree 429

10.3.4. All-Pairs Shortest Path 432
10.4.Randomized Algorithms 434

10.4.1. Random Number Generators 436

10.4.2. Skip Lists 440

10.4.3. Primality Testing 442
10.5.Backtracking Algorithms 444

10.5.1. The Turnpike Reconstruction Problem

10.5.2. Games 449

Summary 455

445

Exercises 455
References 464

Chapter 11 Amortized Analysis 469
11.1. An Unrelated Puzzle 470
11.2.Binomial Queues 470
11.3.Skew Heaps 475
11.4.Fibonacci Heaps 477
11.4.1. Cutting Nodes in Leftist Heaps 478
11.4.2. Lazy Merging for Binomial Queues 481
11.4.3. The Fibonacci Heap Operations 484
11.4.4. Proof of the Time Bound 485
11.5.Splay Trees 487
Summary 491
Exercises 491
References 493

Chapter 12 Advanced Data Structures and Implementation
12.1. Top-Down Splay Trees 495
12.2.Red-Black Trees 503
12.2.1. Bottom-Up Insertion 503
12.2.2. Top-Down Red-Black Trees 505
12.2.3. Top-Down Deletion 506
12.3. Deterministic Skip Lists 512
12.4. AA-Trees 518
12.5. Treaps 524
12.6.k-d Trees 527
12.7.Pairing Heaps 530
Summary 536
Exercises 536
References 540

CONTENTS xvii

495

