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Preface

Purpose/Goals

The second edition of Data Structures and Algorithms Analysis in C++ describes
data structures, methods of organizing large amounts of data, and algorithm
analysis, the estimation of the running time of algorithms. As computers become
faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency,
since inefficiencies in programs become most obvious when input sizes are large.
By analyzing an algorithm before it is actually coded, students can decide if a
particular solution will be feasible. For example, in this text students look at specific
problems and see how careful implementations can reduce the time constraint
for large amounts of data from 16 years to less than a second. Therefore, no
algorithm or data structure is presented without an explanation of its running time.
In some cases, minute details that affect the running time of the implementation are
explored.

Once a solution method is determined, a program must still be written. As
computers have become more powerful, the problems they must solve have become
larger and more complex, requiring development of more intricate programs. The
goal of this text is to teach students good programming and algorithm analysis skills
simultaneously so that they can develop such programs with the maximum amount
of efficiency,

This book is suitable for either an advanced data structures (CS$7) course or a
first-year graduate course in algorithm analysis. Students should have some knowl-
edge of intermediate programming, including such topics as pointers, recursion, and
object-based programming, and some background in discrete math.

Approach

Although the material in this text is largely language independent, programming
requires the use of a specific language. As the title implies, we have chosen C++ for
this book.

C++ has emerged as the leading systems programming language. In addition to
fixing many of the syntactic flaws of C, C++ provides direct constructs (the class
and template) ro implement generic data structures as abstract data types.
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The most difficult part of writing the book was deciding on the amount of C++
to include. Use too many features of C++, and one gets an incomprehensible text;
use too few and you have little more than a C text that supports classes.

The approach we take is to present the material in an object-based approach.
As such, unlike the first edition, there is no use of inheritance in the text. We
use class templates to describe generic data structures. We generally avoid esoteric
C++ features, and use the vector and string classes that are now part of the C++
standard. Using these first-class versions, instead of the second-class counterparts
that were used in the first edition, simplifies much of the code. Because not all
compilers are current, we provide a vector and string class in Appendix B; this is
the class that is actually used in the online code. Chapter 1 provides a review of the
C++ features that are used throughout the text.

Complete versions of the data structures, in both C++ and Java, are available
on the Internet. We use similar coding conventions to make the paraliels between
the two languages more evident. The code has been tested on UNIX systems using g++
(2.7.2 and 2.8.1) and SunPro 4.0 and on Windows95 systems using Visual C++ 5.0
and 6.0, Borland C++ 5.0, and Codewarrior Pro Release 2.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only
way to be comfortable with recursion is to see good uses over and over. Therefore,
recursion is prevalent in this text, with examples in every chapter except Chapter 5.
Chapter 1 also includes material that serves as a review of basic C++. Included is a
discussion of templates and important constructs in C++ class design.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic
analysis and its major weaknesses. Many examples are provided, including an
in-depth explanation of logarithmic running time. Simple recursive programs are
analyzed by intuitively converting them into iterative programs. More complicated
divide-and-conquer programs are introduced, but some of the analysis | solving
recurrence relations) is implicitly delayed until Chapter 7, where it is performed in
detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding these
data structures using ADTs, fast implementation of these data structures, and an
exposition of some of their uses. There are almost no complete programs, but the
exercises contain plenty of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external
search trees (B-trees). The UNIx file system and expression trees are used as examples.
AVL trees and splay trees are introduced. More careful treatment of search tree
implementation details is found in Chapter 12. Additional coverage of trees, such as
file compression and game trees, is deferred until Chapter 10. Data structures for an
external medium are considered as the final topic in several chapters.

Chapter $ is a relatively short chapter concerning hash tables. Some analysis is
performed, and extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is
additional material on some of the theoretically interesting implementations of
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priority queues. The Fibonacci heap is discussed in Chapter 11, and the pairing heap
is discussed in Chapter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and
analysis. All the important general-purpose sorting algorithms are covered and
compared. Four algorithms are analyzed in detail: insertion sort, Shellsort, heapsort,
and quicksort. External sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time.
This is a short and specific chapter that can be skipped if Kruskal’s algorithm is not
discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not
only because they frequently occur in practice but also because their running time is so
heavily dependent on the proper use of data structures. Virtually all of the standard al-
gorithms are presented along with appropriate data structures, pseudocode, and anal-
ysis of running time. To place these problems in a proper context, a short discussion
on complexity theory (including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving
techniques. This chapter is heavily fortified with examples. Pseudocode is used in
these later chapters so that the student’s appreciation of an example algorithm is not
obscured by implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters
4 and 6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the k-d tree, and the pairing heap.
This chapter departs from the rest of the text by providing complete and careful
implementations for the search trees and pairing heap. The material is structured
so that the instructor can integrate sections into discussions from other chapters.
For example, the top-down red-black tree in Chapter 12 can be discussed under
AvL trees (in Chapter 4). Appendix A discusses the Standard Template Library and
illustrates how the concepts described in this text are applied to a high-performance
data structures and algorithms library. Appendix B describes an implementation of
vector and string.

Chapters 1-9 provide enough material for most one-semester data structures
courses. If time permits, then Chapter 10 can be covered. A graduate course on
algorithm analysis could cover Chapters 7-11. The advanced data structures analyzed
in Chapter 11 can easily be referred to in the earlier chapters. The discussion of
NP-completeness in Chapter 9 is far too brief to be used in such a course. Garey and
Johnson’s book on NP-completeness can be used to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material
is presented. The last exercises may address the chapter as a whole rather than a
specific section. Difficult exercises are marked with an asterisk, and more challenging
exercises have two asterisks.

A solutions manual containing solutions to almost all the exercises is avail-
able online to instructors from the Addison Wesley Longman Publishing Company.
Instructors should contact their Addison-Wesley local sales representative for infor-
mation on the manual’s availability.
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References

References are placed at the end of each chapter. Generally the references either
are historical, representing the original source of the material, or they represent
extensions and improvements to the results given in the text. Some references
represent solutions to exercises.

Code Availability

The example program code in this book is available via anonymous ftp at
ftp.awl.com. It is also accessible through the World Wide Web; the URL is
http://www.awl.com/cseng/ (follow the links from there). The exact location of
this material may change.
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