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Chapter 1

What Is Comb: rics?

It would be surprising indeed if a reader of this book had never solved
a combinatorial problem. Have you ever counted the number of games
n teams would play if each team played every other team exactly once?
Have you ever constructed magic squares? Have you ever attempted to
trace through a network without removing your pencil from the paper
and without tracing any part of the network more than once? Have
you ever counted the number of poker hands that are full houses in or-
der to determine what the odds against a full house are? These are all
combinatorial problems. As they might suggest, combinatorics has its
historical roots in mathematical recreations and games. Many prob-
lems that were studied in the past, either for amusement or for their
aesthetic appeal, are today of great importance in pure and applied
science. Today, combinatorics is an important branch of mathemat-
ics, and its influence continues to expand. Part of the reason for the
tremendous growth of combinatorics has been the major impact that
computers have had and continue to have in our society. Because of
their increasing speed, computers have been able to solve large-scale
problems that previously would not have been possible. But computers
do not function independently. They need to be programmed to per-
form. The bases for these programs often are combinatorial algorithms
for the solutions of problems. Analysis of these algorithms for efficiency
with regard to running time and storage requirements requires more
combinatorial thinking.

Another reason for the continued growth of oombma.t.oncs is its ap-
plicability to disciplines that previously had little serious contact with
mathematics. Thus, we find that the ideas and techniques of combina-
torics are being used not only in the traditional area of mathematical
application, namely the physical sciences, but also in the social sci-

1



2 Chapter 1: What is Combinatorics?

ences, the biological sciences, information theory, and so on. In addi-
tion, combinatorics and combinatorial thinking have become more and
more important in many mathematical disciplines.

Combinatorics is concerned with arrangements of the objects of
a set into patterns satisfying specified rules. Two general types of
problems occur repeatedly:

o Ezistence of the arrangement. If one wants to arrange the objects
of a set so that certain conditions are fulfilled, it may not be at
all obvious whether such an arrangement is possible. This is
the most basic of questions. If the arrangement is not always
possible, it is then appropriate to ask under what conditions,
both necessary and sufficient, the desired arrangement can be
achieved.

e Enumeration or classification of the arrangements. If a specified
arrangement is possible, there may be several ways of achieving
it. If so, one may want to count their number or to classify them
into types.

Although both existence and enumeration can be considered for
any combinatorial problem, it often happens in practice that, if the
existence question requires extensive study, the enumeration problem is
very difficult. However, if the existence of a specified arrangement can
be settled with reasonable ease, it may be possible to count the number
of ways of achieving the arrangement. In exceptional cases (when their
number is small), the arrangements can be listed. It is important to
understand the distinction between listing all the arrangements and
determining their number. Once the arrangements are listed, they
can be counted by setting up a one-to-one correspondence between
them and the set of integers {1,2,3,...,n} for some n. This is the
way we count: one, two, three, ... . However, we shall be concerned
primarily with techniques for determining the number of arrangements
of a particular type without first listing them. Of course the number
of arrangements may be so large as to preclude listing them all. In
sum, many combinatorial problems are of the following forms:

“Is it possible to arrange . . . ?”
“Does there exist a . . . ?”
“In how many ways can . . . ?”

”

“Count the number of . . . .

Two other combinatorial problems that occur in conjunction with
these forms are the following:
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e Study of a known arrangement. After one has done the (possibly
difficult) work of constructing an arrangement satisfying certain
specified conditions, its properties and structure can then be in-
vestigated. Such structure may have implications for the classi-
fication problem and also for potential applications. It may also
have implications for the next problem.

e Construction of an optimal arrangement. If more than one ar-
rangement is possible, one may want to determine an arrange-
ment that satisfies some optimality criterion—that is, to find a
“best” or “optimal” arrangement in some prescribed sense.

Thus, a general description of combinatorics might be that com-
binatorics is concerned with the eristence, enumeration, analysis, and
optimization of discrete structures. In this book, discrete generally
means finite, although some discrete structures are infinite.

One of the principal tools of combinatorics for verifying discoveries
is mathematical induction. Induction is a powerful procedure, and it
is especially so in combinatorics. It is often easier to prove a stronger
result than a weaker result with mathematical induction. Although it is
necessary to verify more in the inductive step, the inductive hypothesis
is stronger. Part of the art of mathematical induction is to find the
right balance of hypotheses to carry out the induction. We assume that
the reader is familiar with induction; he or she will become more so as
a result of working through this book.

The solutions of combinatorial problems often require ad hoc ar-
guments sometimes coupled with use of general theory. One cannot
always fall back onto application of formulas or known results. One
must set up a mathematical model, study the model, do some com-
putation for small cases, develop some insight, and use one’s own in-
genuity for the solution of the problem. I do not mean to imply that
there are no general principles or methods that can be applied. For
counting problems, the inclusion—exclusion principle, the so-called pi-
geonhole principle, the methods of recurrence relations and generating
functions, Burnside’s theorem, and Pélya counting are all examples of
general principles and methods that we will consider in later chapters.
But, often, to see that they can be applied and how to apply them re-
quires cleverness. Thus, experience in solving combinatorial problems
is very important. The implication is that with combinatorics, as with
mathematics in general, the more problems one solves, the more likely
one is able to solve the next problem.

In order to make the preceding discussion more meaningful, let us
now turn to a few examples of combinatorial problems. They vary from
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relatively simple problems (but requiring ingenuity for solution) to
problems whose solutions were a major achievement in combinatorics.
Some of these problems will be considered in more detail in subsequent

chapters.

1.1 Example: Perfect Covers of Chessboards

Consider an ordinary chessboard which is divided into 64 squares in 8
rows and 8 columns. Suppose there is available a supply of identically
shaped dominoes, pieces which cover exactly two adjacent squares of
the chessboard. Is it possible to arrange 32 dominoes on the chess-
board so that no 2 dominoes overlap, every domino covers 2 squares,
and all the squares of the chessboard are covered? We call such an
arrangement a perfect cover of the chessboard by dominoes. This is
an easy arrangement problem, and one quickly can construct many
different perfect covers. It is difficult but nonetheless possible to count
the number of different perfect covers. This number was found by Fis-
cher! in 1961 to be 12,988, 816 = 24 x (901)2. The ordinary chessboard
can be replaced by a more general chessboard divided into mn squares
lying in m rows and n columns. A perfect cover need not exist now.
Indeed, there is no perfect cover for the 3-by-3 board. For which values
of m and n does the m-by-n chessboard have a perfect cover? It is not
difficult to see that an m-by-n chessboard will have a perfect cover if
and only if at least one of m and n is even or, equivalently, if and only
if the number of squares of the chessboard is even. Fischer has derived
general formulae involving trigonometric functions for the number of
different perfect covers for the m-by-n chessboard. This problem is
equivalent to a famous problem in molecular physics known as the
dimer problem. It originated in the investigation of the absorption of
diatomic atoms (dimers) on surfaces. The squares of the chessboard
correspond to molecules, while the dominoes correspond to the dimers.

Consider once again the 8-by-8 chessboard and, with a pair of scis-
sors, cut out two diagonally opposite corner squares, leaving a total
of 62 squares. Is it possible to arrange 31 dominoes to obtain a per-
fect cover of this “pruned” board? Although the pruned board is very
close to being the 8-by-8 chessboard, which has over twelve million
perfect covers, it has no perfect cover. The proof of this is an example
of simple but clever combinatorial reasoning. In an ordinary 8-by-8
chessboard the squares are alternately colored black and white, with

'M.E. Fischer: Statistical Mechanics of Dimers on a Plane Lattice, Physical
Review, 124 (1961), 1664-1672. .
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32 of the squares white and 32 of the squares black. If we cut out two
diagonally opposite corner squares, we have removed two squares of
the same color, say white. This leaves 32 black and 30 white squares.
But each domino covers one black and one white square, so that 31
nonoverlapping dominoes on the board cover 31 black and 31 white
squares. Therefore the pruned board has no perfect cover, and the
reasoning above can be summarized by

3[BT # 3B + 3.

More generally, one can take an m-by-n chessboard whose squares
are alternately colored black and white and arbitrarily cut out some
squares, leaving a pruned board. When does a pruned board have a
perfect cover? For a perfect cover to exist the pruned board must have
an equal number of black and white squares. But this is not sufficient,
as the example in Figure 1.1 indicates.

Wix |[W|B[|W
x| W|IB|x|B
W[iB|x|B|W
B|W| B|W|B
Figure 1.1

Thus, we ask: What are necessary and sufficient conditions for a
pruned board to have a perfect cover? We will return to this problem in
Chapter 9 and will obtain a complete solution by applying the theory
of matchings in bipartite graphs. There, a practical formulation of this
problem is given in terms of assigning applicants to jobs for which they
qualify. ' -

There is another way to generalize the problem of a perfect cover
of an m-by-n board by dominoes. Let b be a positive integer. In place
of dominoes we consider 1-by-b pieces that consist of b 1-by-1 squares
joined side by side consecutively. We call these pieces b-ominoes. Thus,
a b-omino can cover b consecutive squares in a row or b consecutive
squares in a column. In Figure 1.2, a 5-omino is illustrated. A 2-
omino is simply a domino. A 1-omino is called a monomino.

LI T T T

Figure 1.2. A 5-omino
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A perfect cover of an m-by-n board by b-ominoes is an arrangement of
b-ominoes on the board so that (i) no two b-ominoes overlap, (ii) every
b-omino covers b squares of the board, and (iii) all the squares of the
board are covered. When does an m-by-n board have a perfect cover by
b-ominoes? Since each square of the board is covered by exactly one
b-omino, in order for there to be a perfect cover b must be a factor of
mn. Surely, a sufficient condition for the existence of a perfect cover is
that b be a factor of m or b be a factor of n. For if b is a factor of m,
we may perfectly cover the m-by-n board by arranging m/b b-ominoes
in each of the n columns, while if b is a factor of n we may perfectly
cover the board by arranging n/b b-ominoes in each of the m rows. Is
this sufficient condition also necessary for there to be a perfect cover?
Suppose for the moment that b is a prime number and that there is
a perfect cover of the m-by-n board by b-ominoes. Then b is a factor
of mn and, by a fundamental property of prime numbers, b is a factor
of m or b is a factor of n. We conclude that, at least for the case
of a prime number b, an m-by-n board can be perfectly covered by
b-ominoes if and only if b is a factor of m or b is a factor of n.

In case b is not a prime number, we have to argue differently. So
suppose we have the m-by-n board perfectly covered with b-ominoes.
We want to show that either m or n has a remainder of 0 when di-
vided by b. We divide m and n by b obtaining quotients p and ¢ and
remainders r and s, respectively:

m = pb+r, where 0<r<b-1,
n = gb+s, where 0<s<b-1.
If 7 = 0, then b is a factor of m. If s = 0, then b is a factor of n. By

interchanging the two dimensions of the board, if necessary, we may
assume that r < s. We then want to show that » = 0.

1 2|3 b—-1}( b

b 12 b—-2]1b-1
b—-1(b(1 b—3(b-2

2 314 b 1

Figure 1.3. Coloring of a b-by-b board with b colors
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We now generalize the alternate black-white coloring used in the
case of dominoes (b = 2) to b colors. We choose b colors which we
label as 1, 2, ..., b. We color a b-by-b board in the manner indicated
in Figure 1.3, and we extend this coloring to an m-by-n board in the
manner illustrated in Figure 1.4 for the case m = 10, n = 11, and
b=4d.

Each b-omino of the perfect covering covers one square of each of
the b colors. It follows that there must be the same number of squares
of each color on the board. We consider the board to be divided into
three parts: the upper pb-by-n part, the lower left r-by-gb part, and
the lower right r-by-s part. (For the 10-by-11 board in Figure 1.4, we
would have the upper 8-by-11 part, the 2-by-8 part in the lower left,
and the 2-by-3 part in the lower right.) In the upper part each color
occurs p times in each column and hence pn times altogether. In the
lower left part each color occurs g times in each row and hence rq times
altogether. Since each color occurs the same number of times on the
whole board, it now follows that each color occurs the same number of
times in the lower right r-by-s part.

112131411 {2[3{4]112]3
4111234123412
3141123147123 ]4]1
21314123 |4|1(2(|3]4
1123411213 [41]2]3
411123141234 ]1]2
314]112)3[4/1(2]3]4]1
213(4(1]213(4{1}2[34
112(3|4]11(2]|3[4)j1[2]3
41112134 [1|2|3(4]1]2

Figure 1.4. Coloring of a 10-by-11 board with four colors

How many times does color 1 (and, hence, each color) occur in the
r-by-s part? Since r < s, the nature of the coloring is such that color
1 occurs once in each row of the r-by-s part and hence r times in the
r-by-s part. Let us now count the number of squares in the r-by-s part.
On the one hand there are 73 squares; on the other hand, there are r
squares of each of the b colors and so rb squares altogether. Equating
we get rs = rb. If r # 0, we cancel to get s = b, contradicting s < b—1.
So r = 0, as desired. We summarize as follows:
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An m-by-n board has a perfect cover by b-ominoes if and only if b
is a factor of m or b is a factor of n.

A striking reformulation of the preceding statement is the following:
Call a perfect cover trivial if all the b-ominoes are horizontal or all the
b-ominoes are vertical. Then an m-by-n board has a perfect cover by
b-ominoes if and only if it has a trivial perfect cover. Note that this
does not mean that the only perfect covers are the trivial ones. It does
mean that if a perfect cover is possible, then a trivial perfect cover is
also possible.

1.2 Example: Cutting a Cube

Consider a block of wood in the shape of a cube, 3 feet on an edge. It is
desired to cyt the cube into 27 smaller cubes, 1 foot on an edge. What
is the smallest number of cuts in which this can be accomplished? One
way of cutting the cube is to make a series of 6 cuts, 2 in each direction,
while keeping the cube in one block as shown in Figure 1.5. But is it
possible to use fewer cuts if the pieces can be rearranged between cuts?
An example is also given in Figure 1.5 where the second cut now cuts
through more wood than it would have if we had not rearranged the
pieces after the first cut. Since the number of pieces, and thus the
number of rearrangements, increases with each cut, this might appear
to be a difficult problem to analyze.

Figure 1.5
But let us look at it another way. Every one of the 27 small cubes
except the one in the middle has at least one face that was originally
part of one of the faces of the large cube. The cube in the middle has
every one of its faces formed by cuts. Since it has 6 faces, 6 cuts are
necessary to form it. Thus, at least 6 cuts are always necessary, and



