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Preface

This book is intended to make a smooth transition from linear algebra to the basics
of functional analysis. When possible, we present concepts starting with a finite-
dimensional example using matrix calculations and finite basis and we build up from
that point to more complicated examples in infinite-dimensional spaces, making em-
phasis in the main differences from one case to the other. Although we rely upon
reader’s knowledge of basic linear algebra and vector spaces, we go back to indic-
ate some relevant concepts and techniques that will be necessary in several parts in
the book.

Throughout the book, there are several examples and proofs that are left to the
reader to complete. This is done with the objective of requiring an active participa-
tion from the reader that we expect will result in a better insight of the problems and
techniques involved in the theory.

The main prerequisite for this book would be a proof-based course in linear
algebra. A basic course in topology is preferred but not completely necessary. Al-
though measure-theoretic examples are presented in several parts of the book, those
can be safely disregarded in a first reading. However, we would like to recommend
Refs [8, 18].

In Chapter 1 we give a brief introduction to the axiom of choice and its equival-
ent formulations, emphasizing the usage of the principle. We give some examples
which highlight the rationale in the handling of the axiom of choice. Among those
examples are the proofs that every vector space has a Hamel basis, the existence of
nonmeasurable Lebesgue sets and a whimsy version of the Banach—Tarski paradox.

Chapter 2 consists of an introduction to the theory of Hilbert spaces. It starts by
defining the notion of norm as a way of measuring vectors and, consequently, dis-
tances between vectors. Then ¢” spaces are introduced and Minkowski and Hélder’s
inequalities are proven in order to define the | - [ ,-norm. We then notice that in the
finite-dimensional context, the case p = 2 coincides with the Euclidean geometric
manner of measuring vectors which comes from Pythagoras Theorem. We then ex-
hibit the necessity of having a way of measuring angles in a vector space, and inner
products are introduced along with several examples and geometric properties such
as parallelogram identity and polarization identities. We finish the chapter studying
orthogonal sequences and introducing the notion of Fourier coefficients and their
properties.

In Chapter 3 we start by presenting examples of Banach spaces and show that in
finite dimensions all norms are equivalent. We also show that the compactness of the
closed unit ball is a property that characterizes finite-dimensional vector spaces. We
describe some separable spaces and its relation to Schauder basis.

Chapter 4 contains the definition and examples of linear transformations in sev-
eral vector spaces. Then we go back to the study of matrices as linear transformations
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acting on finite-dimensional spaces. We show that in this case, continuity is an
automatic property and that this is a main difference from the infinite-dimensional
case. We calculate the norm of some concrete bounded linear operators and show that
the space of linear operators with range on a Banach space is itself a Banach space.
Then we finish the chapter with an extension theorem.

After studying general linear operators, Chapter 5 is devoted to study the special
case of linear functionals. First, by showing examples and then, in the case of Hil-
bert spaces, by identifying a way to represent all linear functionals. Next, we look
for a similar representation in Banach spaces, motivating the notion of dual spaces
and considering examples. The chapter finishes with a section presenting the bra-ket
notation as a way of distinguishing between vectors in a Hilbert space and its dual.

Chapter 6 is an optional chapter focused on the theory of Fourier coefficients of
functions on the space L*[-m, ). It starts by studying such coefficients from the point
of view of a Hilbert space and then passes to the more general space L![-, 7] in which
the question of convergence of the Fourier series arises. Sufficient conditions on a
function f are given to assure the pointwise and the uniform convergence of its Fourier
series. This chapter uses tools from measure theory and topology of metric spaces and
it can be disregarded if the reader does not have the necessary background.

Chapter 7 is also an optional chapter and relies heavily on measure theory and
integration. We introduce the notion of convolution operator and obtain some immedi-
ate properties of this operator. The Young inequality for the convolution is also given.
The notions of Dirac sequences and Friedrich mollifiers are introduced and it is shown
that the convolution with a Friedrich mollifier generates an identity approximation op-
erator in the framework of Lebesgue spaces. The Fourier transform is introduced in the
case of L! functions and then, using the Plancherel Theorem, we extend the notion
of Fourier transform into the space of square summable functions. Many propetties
of the Fourier transform are derived, e.g., the translation, modulation, convolution,
uncertainty principle, among others. We end the chapter with a brief introduction
to the Schwartz class of functions, which is the natural environment for the Fourier
transform.

In Chapter 8 we study the Fixed Point Theorem in the realm of metric spaces. We
give classical applications, e.g., the Babylonian algorithm, Newton’s method, applic-
ations in the framework of differential and integral equations, to name a few. We also
included a section touching on the subject of fractals, where we prove the Hutchinson
Theorem.

Chapter 9 is devoted to the Baire Category Theorem. Although this is a theorem
that belongs to topology it has plenty of applications in many branches of mathem-
atics, since it is an existence theorem. We give the classical proof of Weierstrass of a
continuous nowhere differentiable function and then we give a very short proof of the
existence of such functions using Baire Category Theorem, in fact showing that the set
of such functions is generic.
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Chapters 10,11,12 and 13 are very important, since they contain the four pillars of
functional analysis: the uniform boundedness principle, the Open Mapping Theorem,
the Closed Graph Theorem and the Hahn-Banach Extension Theorem. All of these
results are existence results and have many applications in analysis and elsewhere.
In Chapter 10 we give two different proofs of the uniform boundedness principle, one
of which does not rely on the Baire Category Theorem. As a particular case we show
the Banach-Steinhaus Theorem. We introduce the notion of hilinear operator and
show that a bilinear operator which is continuous in each coordinate is continuous. In
Chapter 11 we define the notion of an open mapping and show the Open Mapping The-
orem which states that a surjective bounded linear operator between Banach spaces
is open. The so-called Banach Isomorphism Theorem is also derived. In Chapter 12
we study the notion of a closed operator and show the Closed Graph Theorem, which
loosely states that a closed operator is continuous under certain conditions. Chapter 13
is devoted to the study of Hahn-Banach-type theorem. We give the real and com-
plex extension version of the Hahn-Banach Theorem based on the Banach function
and show the classical corollaries of this fact, e.g., the Hahn-Banach extension in
norm form, the construction of a linear continuous functional with prescribed con-
ditions, to name a few. The Minkowski functional is studied with some details and it
is pointed out that in any vector space we can introduce a seminorm. Using the no-
tion of Minkowski functional we study the separation theorems. We end the chapter
with some applications of the Hahn-Banach Theorem, e.g., the result that all separ-
able spaces are isometric isomorphic to a subspace of £_,, and with the Lax-Milgram
Theorem.

In Chapter 14, we consider the concept of adjoint operators, starting again from
the knowledge of matrices and motivating the definition with the relation between
a real matrix and its transpose. The rigorous definition for Hilbert spaces is then
presented and some properties are considered. In the case of Banach spaces, a new
definition is given based on the modifications that are needed from the Hilbert space
case. Properties and examples are also showed.

The weak topology is introduced in Chapter 15 as the smallest topology that makes
all linear functionals continuous. Comparisons between weak and norm topologies
are presented and the weak”® topology is also presented. The chapter finishes with a
section devoted to reflexive spaces, showing the classical example of ¢’ spaces and
the counter-example of the space £'.

Chapter 16 is dedicated to describe compact, normal and self-adjoint operat-
ors acting on Hilbert spaces, showing examples and properties in preparation to
Chapter 17. There, a brief introduction to spectral theory is depicted, starting from a
review of the situation in finite-dimensional complex spaces where a linear transform-
ation can be represented by a diagonal matrix if, and only if, it is normal. This serves
as a motivation to look for a similar result in general Hilbert spaces. The chapter ends
by showing the spectral theorem for compact self-adjoint operators. In Chapter 18
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we study in some detail the notion of compactness in metric spaces, we give several
related notions and we provide some criteria of compactness for some function spaces.

In the preparation of this book we made extensive use of some works, namely
Refs [20, 26, 24, 23, 30, 5, 21]. Many of the results, examples and proofs in the text are
also taken from our personal notebooks, and the exact references were lost.

Washington, USA G. Chacon
Bogota, Colombia H. Rafeiro and J.C. Vallejo
December 2016
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Basic Notation

Here we will review the basic notation that will be used throughout the book. In gen-
eral, we will refer to a field FF to denote either R, the set of all real numbers, or C, the
set of complex numbers. Given a natural number n, F" denotes the vector space of all
n-tuples (ay, ..., a,), where the a; belong to either R or C. The symbol [a,-,-]:_:,=1 denotes
an n x n matrix with entries a;. The set of natural numbers will be denoted as IN.

The absolute value of a real number a will be denoted by |a|. Similarly, if z is a
complex number, then we will use the symbol |z| to denote the absolute value or mod-
ulus of a complex number. If z = a + ib, then the complex conjugated will be denoted
asz=a-ibh.

Given a topological space X and a set E < X, we denote by E the closure of the
set E. If there is a metric d defined on X, then B,(x) will denote the open ball centered
at x and with radius r. Similarly, E,(x) denotes the closed ball centered at x and with
radius r. Sequences of elements will be denoted as (x,);;, and with the symbol x, — x
we represent that the limit of x,, is equal to x when n tends to infinity. The topology in
which such limits are considered should be clear from the context.

The symbols sup(A) and inf(A) will denote, respectively, the supremum and the
infimum of aset A € R.

We use the symbol @ to indicate the end of an example or a remark. Similarly, the
symbol o will denote the end of a proof.

Finally, references to the books in the bibliography will be denoted by square
brackets.
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1 Choice Principles

Learning Targets

Introduction to the axiom of choice.
Learn some choice principles which are equivalent to the axiom of choice.

Get acquainted with and understand how to use some type of choice principles in a real-world
situation.

1.1 Axiom of Choice

The axiom of choice is a devise used when we need to iterate some process infinitely,
e.g., when we need to choose some infinite elements from a set. One of the formu-
lations of the axiom uses the notion of choice function and the others rely on the
Cartesian product.

Definition 1.1 (Choice Function). Let X be a nonempty set. A function f : 2¥ — Xis
said to be a choice function on the set X if f(A) ¢ Awhen@ + A c X.

With the notion of choice function we can state the axiom of choice.
Axiom 1.2 (Axiom of Choice). For every nonempty set there exists a choice function.

The axiom of choice can be phrased as

For every family A of disjoint nonempty sets there exists a set B which has exactly one element
in common with each set belonging to A.

Although this axiom seems to be true, at least for the case of finite choices or nu-
merable choices, in the case of nonnumerable infinite choices, the situation is quite
different. Even for the numerable choices it is somewhat an illusion, since we do not
have a way to guarantee that we can choose all the numerable elements without re-
sorting to some type of axiom of choice. For example, to guarantee the existence of
the natural numbers N it is necessary to assume some type of axiom of infinity, as is
done in the Zermelo—Fraenkel set theory. The power of the axiom of choice lies in the
fact that it permits to choose an infinite number of things instantaneously. In Ref. [4]
we have the following remark:

Several mathematicians claimed that proofs involving the axiom of choice have a different nature
from proofs not involving it, because the axiom of choice is a unique set theoretical principle
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which states the existence of a set without giving a method of defining (“constructing”) it, i.e. is
not effective.

In the beginning of the twentieth century there were disputes among several
renowned mathematicians regarding the acceptance of this axiom. One of the serious
obstacles is the so-called Banach-Tarski paradox.

Banach-Tarski Paradox: The unit ball B := {(x,y,2) € R® : X’ + y* + 2° < 1} in three
dimensions can be disassembled into a finite number of pieces (in fact, just five pieces
would suffice), which can then be reassembled (after translating and rotating each of
the pieces) to form two disjoint copies of the ball B.

For more information regarding the Banach-Tarski paradox, see Ref. [41]. In
Theorem 1.6 we give a whimsy version of the Banach-Tarski paradox.

Nowadays the axiom of choice is accepted by the majority of the mathemat-
ical community and we will add it to our mathematical toolbox without further
philosophical discourse. For an account of the history of the axiom of choice see
Ref, [29].

From now on in the whole book, when we use the tribar symbol & before a result,
it means that it relies on the axiom of choice or any of its equivalent formulations.

Definition 1.3. Let (X,-)je ; be a family of sets. The Cartesian product, denoted by
je; Xjs

is the set of all maps x : j — U;cX; such that x(j) € X; foranyj € J.

In the next theorem we collect several choice principles that are equivalent to the
axiom of choice, but before doing that we will need a couple of definitions.

Definition 1.4. Let (X, <) be a poset (partially ordered set). We say that a subset S,
with @ # S € X, is a chain in X if all the elements in S are related by the partial order
from X, i.e. if for all x, y € S we have eitherx < yory < x.

Definition 1.5. A poset X is well ordered if any nonempty subset of X has a minimum
element, viz. if min(A4) exists whenever ¢ + A < X.

The following theorem will be given without proof; for the proof and further results,
cf. Refs [9, 16, 17].

Theorem 1.6. The following principles are equivalent:



