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Preface

This book is an abridged version of our two-volume opus Convex Analysis and
Minimization Algorithms [18], about which we have received very positive feedback
from users, readers, lecturers ever since it was published — by Springer-Verlag in
1993, Its pedagogical qualities were particularly appreciated, in the combination
with a rather advanced technical material.

Now [18] has a dual but clearly defined nature:

— an introduction to the basic concepts in convex analysis,

— a study of convex minimization problems (with an emphasis on numerical algo-

rithms),

and insists on their mutual interpenetration. It is our feeling that the above basic
introduction is much needed in the scientific community. This is the motivation for
the present edition, our intention being to create a tool useful to teach convex anal-
ysis. We have thus extracted from [18] its “backbone” devoted to convex analysis,
namely Chaps III-VI and X. Apart from some local improvements, the present text
is mostly a copy of the corresponding chapters. The main difference is that we have
deleted material deemed too advanced for an introduction, or too closely attached to
numerical algorithms.

Further, we have included exercises, whose degree of difficulty is suggested by
0, 1 or 2 stars *. Finally, the index has been considerably enriched.

Just as in [18}, each chapter is presented as a “lesson”, in the sense of our old
masters, treating of a given subject in its entirety. After an introduction presenting
or recalling elementary material, there are five such lessons:

—~ A Convex sets (corresponding to Chap. I in [18]),

— B Convex functions (Chap.IV in [18]),

— C Sublinearity and support functions (Chap. V),

-~ D Subdifferentials in the finite-valued case (VI),

- E Conjugacy (X).

Thus, we do not go beyond conjugacy. In particular, subdifferentiability of extended-
valued functions is intentionally left aside. This allows a lighter book, easier to
master and to go through. The same reason led us to skip duality which, besides, is
more related to optimization. Readers interested by these topics can always read the
relevant chapters in [18] (namely Chaps XI and XII).



VI Preface

During the French Revolution, the writer of a bill on public instruction com-
plained: “Le défaut ou la disette de bons ouvrages élémentaires a été, jusqu’a
présent, un des plus grands obstacles qui s’opposaient au perfectionnement de
I'instruction. La raison de cette disette, c’est que jusqu’a présent les savants d’un
mérite éminent ont, presque toujours, préféré la gloire d’élever I’édifice de la sci-
ence a la peine d’en éclairer I’entrée.’” Our main motivation here is precisely to
“light the entrance” of the monument Convex Analysis. This is therefore not a ref-
erence book, to be kept on the shelf by experts who already know the building and
can find their way through it; it is far more a book for the purpose of learning and
teaching. We call above all on the intuition of the reader, and our approach is very
gradual. Nevertheless, we keep constantly in mind the suggestion of A. Einstein:
“Everything should be made as simple as possible, but not simpler”. Indeed, the
content is by no means elementary, and will be hard for a reader not possessing a
firm mastery of basic mathematical skill.

We could not completely avoid cross-references between the various chapters;
but for many of them, the motivation is to suggest an intellectual link between appar-
ently independent concepts, rather than a technical need for previous results. More
than a tree, our approach evokes a spiral, made up of loosely interrelated elements.

Many sections are set in smaller characters. They are by no means reserved to
advanced material; rather, they are there to help the reader with illustrative examples
and side remarks, that help to understand a delicate point, or prepare some material
to come in a subsequent chapter. Roughly speaking, sections in smaller characters
can be compared to footnotes, used to avoid interrupting the flow of the develop-
ment; it can be helpful to skip them during a deeper reading, with pencil and paper.
They can often be considered as additional informal exercises, useful to keep the
reader alert.

The numbering of sections restarts at 1 in each chapter, and chapter numbers are
dropped in a reference to an equation or result from within the same chapter.

Toulouse and Grenoble,
March 2001 ' J.-B. Hiniart-Urruty, C. LemaréchaL

! “The lack or scarcity of good, elementary books has been, until now, one of the greatest
obstacles in the way of better instruction. The reason for this scarcity is that, until now,
scholars of great merit have almost always preferred the glory of constructing the mon-
ument of science over the effort of lighting its entrance”” D. Guedj: La Révolution des
Savants, Découvertes, Gallimard Sciences (1988) 130 - 131.
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0. Introduction: Notation, Elementary Results

We start this chapter by listing some basic concepts, which are or should be well-
known — but it is good sometimes to return to basics. This gives us the opportunity of
making precise the system of notation used in this book. For example, some readers
may have forgotten that “i.e.”” means id est, the literal translation of “that is (to say)”.

If we get closer to mathematics, S\{z} denotes the set obtained by depriving a set
-1
S of a point z € S. We also mention that, if f is a function, f (y) is the inverse

image of y, i.e. the set of all points z such that f(z) = y. When f is invertible, this
set is the singleton {f~1(y)}.

After these basic recalls, we prove some results on convex functions of one real
variable. They are just as basic, but are easily established and will be of some use in
this book.

1 Some Facts About Lower and Upper Bounds

1.1 Inthe totally ordered set R, inf E and sup F are respectively the greatest lower
bound — the infimum — and least upper bound - the supremum — of a nonempty
subset E, when they exist (as real numbers). Then, they may or may not belong
to E; when they do, a more accurate notation is min £ and max E. Whenever the
relevant infima exist, the following relations are clear enough:

inf (EU F) = min {inf E, inf F},
FCE = infF2infE, (L.
inf (ENF) > max {inf E,inf F}.

If E is characterized by a certain property P, we use the notation
E = {r ¢ R : r satisfies P}.

Defining (in R considered as a real vector space) the standard operations on
nonempty sets '
E+F:={r=e+f:ecE,fe€F},
tE:={tr : 7€ E} forteR

(the sign “:=" means “equals by definition™), it is also clear that
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inf(E+ F)=infE+inf F,
inftE =tinfE if t >0, (1.2)
inf (~E) = —supFE,

whenever the relevant extrema exist.

The word positive means “> 07, and nonpositive therefore means “< 0”; same
conventions with negative and nonnegative. The set of nonnegative numbers is de-
noted by R* and, generally speaking, a substar deprives a set of the point 0. Thus,
for example,

N.={1,2,...} and R} ={teR:t>0}.
Squared brackets are used to denote the intervals of R : for example,
RDla,b)={teR:a<tb}.

The symbol “]” means convergence from the right, the limit being excluded,
thus, t | 0 means ¢ — 0 in R} . The words “increasing” and “ decreasing” are taken
in a broad sense: a sequence (¢x) is increasing when k > k' = t; > tp. We use
the notation (tx), or (t)x, or (¢x)ken. for a sequence of elements ¢;, ¢, . ..

1.2 Now, to denote a real-valued function f defined on a nonempty set X, we write
X>3zw f(z)eR

The sublevel-set of f atlevel r € R is defined by
S:(f) ={z€X : f(z) <r).
If two functions f and g from X to R satisfy
f(z) < g(z) forallz e X,

we say that f minorizes g (on X), or that g majorizes f.
Computing the number

inf {f(z) :z€eX}=:f (1.3)

represents a minimization problem posed in X : namely that of finding a so-called
minimizing sequence, i.e. (xx) C X such that f(z,) — f when k = +oo (note that
no structure is assumed on X). In other words, f is the largest lower bound inf F(X)
of the subset f(X) C R, and will often be called the infimal value, or more simply
the infimum of f on X. Another notation for (1.3) is inf,e x f(z), or also inf x f.
The function f is usually called the objective function, or also infimand. We can
also meet supremands, minimands, etc.

From the relations (1.1), (1.2), we deduce (hereafter, f,- denotes the infimum of
fover X; fori =1,2):
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inf{f(z) : ZEX1UX2}=min{f1,f2},
X1CcX, = fizh,
inf {f(z) : z € X1 N X3} > max{fi, fa},
inf{f(z1)+f(zz) 1z € Xy andIz€X2}=f_1+f_2, (14
inf {tf(z) : z€ X} =tf, fort>0,
inf{-f(z) : € X} = —sup{f(z) : z€ X},

whenever the relevant extrema exist. The last relation is used very often.

The attention of the reader is drawn to (1.4), perhaps the only non-totally trivial
among the above relations. Calling E; := f(X;) and E; := f(X_) the images
of X, and X, under f, (1.4) represents the sum of the infima inf F; and inf Es.
There could just as well be two different infimands, i.e. (1.4) could be written more
suggestively

inf {f(z1) + g(z2) : 71 € X1 and 73 € X2} = fi + G2
(g being another real-valued function). This last relation must not be confused with
inf {f(z) +9(z) : z€ X} > f+37;

here, in the language of (1.4), X; = X, = X, but only the image by f of the
diagonal of X x X is considered.

Another relation requiring some attention is the decoupling, or transitivity, of
infima: if g sends the Cartesian product X x Y to R, then

inf {g(z,y) :z€ XandyeY} =

. . ) . 1.
= infzex|infyey 9(z,y)] = infyey(infzex 9(z,9)] . (15

1.3 An optimal solution of (1.3) is an Z € X such that

f@=fF< f(:,:) forallz € X;

such an 7 is often called a minimizer, a minimum point, or more simply a minimum
of f on X. We will also speak of global minimum. To say that there exists a min-
imum is to say that the inf in (1.3) is a min; the infimum f = f(Z) can then be
called the minimal value. The notation

min{f(z) : z € X}

is the same as (1.3), and says that there does exist a solution; we stress the fact that
this notation — as well as (1.3) — represents at the same time a number and a problem
to solve. It is sometimes convenient to denote by

Argmin {f(z) : z € X}

the set of optimal solutions of (1.3), and to use “argmin” if the solution is unique.
It is worth mentioning that the decoupling property (1.5) has a translation in
terms of Argmin’s. More precisely, the following properties are easy to see:
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- If (Z, §) minimizes g over X x Y, then § minimizes g(Z, -) over Y and # minimizes
over X the function

p(z) :=inf {g(z,y) : y€ Y}.

~ Conversely, if £ minimizes ¢ over X and if § minimizes g(Z, -) over Y, then (%, §)
minimizes g over X x Y.

Needless to say, symmetric properties are established, interchanging the roles of =
and y.

1.4 In our context, X is equipped with a topology; actually X is a subset of some
finite-dimensional real vector space, call it R™; the topology is then that induced by
a norm. The interior and closure of X are denoted by int X and cl X respectively;
its boundary is bd X .

The concept of limit is assumed familiar. We recall that the limes inferior (in the
ordered set R) is the smallest cluster point.

Remark 1.1 The standard terminology is lower limit (*abbreviated” as lim inf!) This termi-
nology is unfortunate, however: a limit must be a well-defined unique element; otherwise,
expressions such as “f(z) has a limit” are ambiguous. 0

Thus, to say that £ = liminf,_, . f(x), with z* € cl X, means: foralle > 0,

there is a neighborhood N (z*) such that f(z) > £ — ¢ forall z € N(z*),
and
in any neighborhood N(z*), there isz € N(z*)such that f(z) < £ +¢;

in particular, if * € X, we certainly have ¢ < f(z*).

Let z* € X.If f(z*) < liminf, .. f(z), then f is said to be lower semi-
continuous (L.s.c) at £*; upper semi-continuity, which means f(z*) > limsup f(z),
is not much used in our context. It is well-known that, if X is a compact set on
which f is continuous, then the lower bound f exists and (1.3) has a solution. Ac-
tually, lower semi-continuity (of f on the whole compact X) suffices: if (z;) is a
minimizing sequence, with some cluster point * € X, we have

f(=") < liminf f(zx) = lim f(z¢) = f.

Another observation is: let E be such thatcl E ¢ X ; if f is continuous on cl E,
then ’
inf {f(z) : z€ E} =inf {f(z) : € clE}.

This relation is wrong if f is only Ls.c, though: then, only (1.1) gives useful rela-
tions.

Related with (1.3), another problem is whether a given minimizing sequence
(zx) converges to an optimal solution when k — +oo. This problem is really dis-
tinct from (1.3): for example, with X := R, f(0) := 0, f(z) := 1/|z| forz # 0, the
sequence defined by zx = k is minimizing but does not converge to the minimum 0
when k - +o00.
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2 The Set of Extended Real Numbers

In convex analysis, there are serious reasons for wanting to give a meaning to (1.3),
for arbitrary f and X . For this, two additional elements are appended to R: +o0 and
—00.
If £ C R is nonempty but unbounded from above, we set sup E = +00; sim-
ilarly, inf E = —oo if E is unbounded from below. Then consider the case of an
empty set: to maintain a relation such as (1.1)

inf (EU@)[=inf F] = min {inf E,inf 0} forall@ # ECR,

we have no choice and we set inf@ = +oc. Naturally, sup® = —oo, and this
maintains the relation inf (- F) = — sup F in (1.2).

It should be noted that the world of convex analysis is not symmetric, it is uni-
lateral. In particular, + 00 and —oo do not play the same role, and it suffices for our
purpose to consider the set R U {+00}. Extending the notation of the intervals of
R, this set will also be denoted by | — oo, +00].

To extend the structure of R to this new set, the natural rules are adopted:

order: z < 4ooforallz € RU {+00};
addition:  (+00) +z =z + (+o0) = +oo forallz € RU {+00};
multiplication: t-(+o0) =4ooforall0 <t e RU {+0}.

Thus, we see that

— the structured set (RU{+o0}, +) is not a group, just because + oo has no opposite;

— it is a fortiori not a field, a second reason being that we avoid writing ¢ x (400)
fort < 0.

On the other hand, we leave it to the reader to check that the other axioms are
preserved (for the order, the addition and the multiplication); so some calculus can
at least be done in RU {+00}.

Actually, R U {400} is nothing more than an ordered convex cone, analogous

to the set R} of positive numbers. In particular, observe the following continuity
properties:

(ks 4k) = (z,y) in[RU{+0}]>) = =z +y > z+yinRU {+00};
(te,zx) = (t,z) inR} x (RU{+00}) = trzx = trinRU {+00}.

In this book, starting from Chap. B, the minimization problems of §1 - and in
particular (1.3) — will be understood as posed in RU{+00}. The advantage of this is
to give a systematic meaning to all the relations of §1. On the other hand, the reader
should not feel too encumbered by this new set, which takes the place of the familiar
set of real numbers where algebra s “easy”. First of all, RU{+ 00} is relevant only as
far as images of functions are concerned: any algebraic manipulations involving no
term f(z) is “safe” and requires no special attention. When some f(z) is involved,
the following pragmatic attitude can be adopted:
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— comparison and addition: no problems in R U {+o00}, justasin R;

— subtraction: before subtracting f(z), make sure that f(z) < +00;

- multiplication: think of a term like ¢ f(z) as the multiplication of the vector f(x)
by the scalar ¢; if t < 0, make sure that f(z) < +00 (note: in convex analysis, the
product of functions f(z)g(z) is rarely used, and multiplication by ~1 puts (1.3)
in a different world);

— division: same problems as in R, namely avoid division by 0;

— convergence: same problems as in R, namely pay attention to co — oo and O -
(+00);

- in general, do not overuse expressions like ¢ f(z) with t < 0, or r — f(z), etc.:
they do not fit well with the conical structure of R U {+oo}.

3 Linear and Bilinear Algebra

3.0 Let us start with the model-situation of R*, the real n-dimensional vector space
of n-uples z = (&',...,£™). In this space, the vectors ey, ..., en, where each e;
has coordinates (0,...,0,1,0, ...,0) (the “1” in i** position) form a basis, called
the canonical basis. The linear mappings from R™ to R™ are identified with the
n X m matrices which represent them in the canonical bases; vectors of R™ are thus
naturally identified with n x 1 matrices.

The space R™ is equipped with the canonical, or standard, Euclidean structure
with the help of the scalar product

I=(§1;~--7§")yy=(771,~~-,7ln) — xTy 1=Z€iﬂi
i=1

(also denoted by z - y). Then we can speak of the Euclidean space (R, ).

3.1 More generally, a Euclidean space is a real vector space, say X, of finite dimen-
sion, say n, equipped with a scalar product denoted by (-, -). Recall that a scalar (or
inner) product is a bilinear symmetric mapping (-, -) from X x X to R, satisfying
(z,z) >0forz #0.

(a) If abasis {b;,...,b,} has been chosen in X, along which two vectors z and Y
have the coordinates (£!,..., &™) and (n},..., ™), we have

(z,y) = Y &/ (bi,by).

4,j=1

This can be written (z,y) = 7 Qy, where Q is a symmetric positive definite n x n
matrix (S, (R) will denote the set of symmetric matrices). In this situation, to equip
X with a scalar product is actually to take a symmetric positive definite matrix.

The simplest matrix @ is the identity matrix I, or I, which corresponds to the
scalar product
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n
(@y)=zTy=) &7,
=1

called the dot-product. For this particular product, one has (b;, b;) = &;; (d;; is the
symbol of Kronecker: §;; = 0if i # j, d;; = 1). The basis {by,...,bn} is said to
be orthonormal for this scalar product; and this scalar product is of course the only
one for which the given basis is orthonormal.

Thus, whenever we have a basis in X, we know all the possible ways of equip-
ping X with a Euclidean structure.

(b). Reasoning in the other direction, let us start from a Euclidean space (X, (-, -})
of dimension n. It is possible to find a basis {5, ...,b,} of X, which is orthonormal
for the given scalar product (i.e. which satisfies (b, b;) = §;; fori,j =1,...,n).If
two vectors x and y are expressed in terms of this basis, (z, y) can be written z7y.
Use the space R” of §3.0 and denote by  : R® — X the unique linear operator
(isomorphism of vector spaces) satisfying ¢(e;) = b; fori = 1,...,n. Then

Ty = (p(z),¢(y)) forallzandyin R™,

so the Euclidean structure is also carried over by ¢, which is therefore an isomor-
phism of Euclidean spaces as well. Thus, any Euclidean space (X, (-, -)) of dimen-
sion n is isomorphic to (R™,” ), which explains the importance of this last space.
However, given a Euclidean space, an orthonormal basis need not be easy to con-
struct; said otherwise, one must sometimes content oneself with a scalar product
imposed by the problem considered.

Example 3.1 Vector spaces of matrices form a rich field of applications for the
techniques and results of convex analysis. The set of p x g matrices forms a vector
space of dimension pgq, in which a natural scalar product of twe matrices M and N
is (tr A := Y-, Ay is the trace of the n X n matrix A)

P g
(M,N):=te M"N =35 "M;;N,;. D

=1 j=1

(c). A subspace V of (X, (:,-)) can be equipped with the Euclidean structure de-
fined by
VxV3(z,y) - (z.9).

Unless otherwise specified, we will generally use this induced structure, with the
same notation for the scalar productin V and in X .

More importantly, let (X1, (-,-}1) and (X2, (-, )2) be two Euclidean spaces.
Their Cartesian product X = X; x X, can be made Euclidean via the scalar product

((z1,22), (¥1,%2)) = (z,9) = (,9)) := (=1, 1)1 + (22, 12)2.-

This is not compulsory: cases may occur in which the product-space X has its own
Euclidean structure, not possessing this “decomposability” property.
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3.2 Let (X, (-, -)) and (Y, (-, ))) be two Euclidean spaces, knowing that we could
write justas well X = R® and Y = R™.

{a). If A is a linear operator from X to Y, the adjoint of A is the unique operator
A* fromY to X, defined by

(A*y,z) = (y, Az)) forall (z,y) e X xY.

There holds (A*)" = A. When both X and Y have orthonormal bases (as is the
case with canonical bases for the dot-product in the respective spaces), the matrix
representing A* in these bases is the transpose of the matrix representing A.

Consider the case (Y, (-, ) = (X, (-,-)). When A is invertible, so is A*, and
then (A*)~! = (A~1)*. When A* = A, we say that A is self-adjoint, or symmetric.
If, in addition,

(Az,z) >0 ([resp. 2 0] forall0#z€ X,

then A is positive definite [resp. positive semi-definite] and we write A % 0 [resp.
A > 0]. When X =Y is equipped with an orthonormal basis, symmetric operators
can be characterized in terms of matrices: A is symmetric [resp. symmetric positive
(semi)-definite] if and only if the matrix representing A (in the orthonormal basis)
is symmetric {resp. symmetric positive (semi)-definite].

(b). When the image-space Y is R, an operator is rather called a form. If £ is a
linear form on (X, (-, )), there exists a unique s € X such that £(z) = (s, z) for
all z € X. If g is a quadratic form on (X, (-, )), there exists a unique symmetric
operator @ such that

q(z) := 1{Qz,z) forallz € X
(the coefficient 1/2 is useful to simplify most algebraic manipulations).

Remark 3.2 The correspondence ¢ < s is a triviality in (R?,” ) (just transpose
the 1 x n matrices to vectors) but this is deceiving. Indeed, it is the correspondence

S X" between a space and its dual that is being considered. For two vectors
s and z of X, it is good practice to think of the scalar product (s, z) as the action
of the first argument s (a slope, representing an element in the dual) on the second
argument z; this helps one to understand what one is doing. Likewise, the operator
@ associated with a quadratic form sends X to X*; and an adjoint 4* is from Y'*'
to X*. O

3.3 Two subspaces U and V of (X, (-, -)) are mutually orthogonal if (u,v) = 0 for
allu € U and v € V, arelation denoted by U L V. On the other hand, U and V
are generators of X if U + V = X. For given U, we denote by U* the orthogonal
supplement of U, i.e. the unique subspace orthogonal to U such that U and U+ form
a generator of X.

Let A: X — Y be an arbitrary linear operator, X and Y having arbitrary scalar
products. As can easily be seen,



