Principles of

- Neurobiological
Signal

Analysis

Edmund M.Glaser
Daniel S. Ruchkin



Principles of
Neurobiological
Signal

Analysis

Edmund M. Glaser
Daniel S. Ruchkin

Schoo! of Medicine
University of Maryland
Baltimore, Maryland

ACADEMIC PRESS New York San Francisco London 1976
A Subsidiary of Harcourt Brace Jovanovich, Publishers



CoPYRIGHT © 1976, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR

TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT

PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data

Glaser, Edmund M
Principles of neurobiological signal analysis.

Bibliography: p.
Includes index.

1. Neural analyzers—Mathematical models.
kin, Daniel S., joint author. 11 Title. 111
Signal analysis.
QP363.G58 591.1'88 7642267

ISBN 0-12-285950-2

PRINTED IN THE UNITED STATES OF AMERICA

L Ruch-
Title:



PREFACE

More years ago than we care to think of or mention, we convinced ourselves of
the need for a monograph on the principles of signal analysis as applied to the
electrical activity of the nervous system. This book is the result. Our premise in
organizing it has been simple: that neurobiologists are generally uneasy in their use
of signal analysis simply because they have had little formal training in the mathe-
matics underlying its framework and that therefore they have little intuitive feel for
what signal analysis procedures mean. Our goal, consequently, is to provide neuro-
biologists with a reasonably detailed discussion of signal analysis as it has been
variously applied to neuronal signals. We wish to make them more aware of what
these analyses can and cannot do, their implications, and limitations. We have used
mathematics where it is essential, but in doing so we have tried to avoid unnecessary
rigor. We have assumed that mathematically the reader is equipped with a hazy
recollection of calculus. Our hope is that we can dispel most of this haze in the early
going. On another front, we have consciously refrained from treating the cuisine of
signal analysis. Recipes or programs for signal analysis are readily available for a
variety of computers. We do not feel they provide much elucidation of the basic
issues.

The first three chapters establish the theoretical groundwork of signal analysis.
Chapter 1 presents an introductory discussion of the properties of signal and noise,
especially as they apply to the nervous system. It reflects our judgment that the
essential ingredients of neurobiological signal analysis are the related concepts of
signal spectra and covariance functions. They are likely to remain so even as the
present, predominantly linear methods of signal analysis are broadened to encom-
pass nonlinear techniques. Chapter 2 discusses the methods of sampling and convert-
ing biological signals into sequences of digital numbers readily digestible by a com-
puter. Chapter 3 then develops more thoroughly the concepts of spectrum and
covariance analysis. This chapter is mathematically somewhat more demanding than
the first two. Those who find it too trying should not feel distressed since much of
what appears subsequently will still be comprehensible. The loss is in the apprecia-
tion of some of the analytic details.

Chapters 4 and 5 deal with techniques for extracting evoked responses from
background noise and with muitivariate statistical procedures for treating evoked
response waveshapes as variables dependent upon the experimental manipulations
performed upon a subject. Chapters 6 and 7 deal with the analysis of spike (action
potential) activity generated by individual neurons and small groups of neurons.
Chapter 8 presents methods for studying how such spike activity may be related to

Xi



PREFACE

the concurrently observed slow wave (EEG-like) activity of the nervous system.

A number of individuals have contributed to the completion of this work. It was
Dr. José del Castillo who provided us with facilities at the Laboratory of Neurobiol-
ogy of the University of Puerto Rico. It was there that this book had its inception.
Drs. Donald Childers, Emanuel Donchin, and George Gerstein reviewed various chap-
ters and provided much helpful criticism. A special note of thanks goes to Drs. José
Negrete and Guillermina Yankelevich de Negrete who lent much encouragement
during the initial tribulations of writing. Finally, we would like to express our
special appreciation to Mrs. Frances Pridgen who, equipped with an extensive back-
ground as a legal secretary, typed the manuscript and suffered with us in guiding it
to completion. In a moment of relaxation, when all was done, we asked her opinion
of the work. She flipped slowly through its pages, smiled and said, ‘“Naturally, this is
taxable.” We wonder,
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Chapter 1

SOME PROPERTIES
OF BIOLOGICAL SIGNALS

1.1, INTRODUCTION

Speaking in a somewhat general way, we say that all biological
data can be considered to be signals. Obviously, however, some data
are more signallike than others. The dividing line between data that
can be profitably considered to be signallike and data that cannot
depends upon both the origin of the data and how we propose to pro-
cess it and analyze it conceptually. A discussion of the many
facets of this idea in the light of modern computer data processing
methods is one of the major purposes of this book. Embarking in
this direction requires that we first establish some of the major
concepts and properties of signals insofar as they relate to bio-
logical processes. The properties of these signals influence, guide,
and sometimes determine the ways in which computer programs are
developed to perform signal analysis.

Signal: A variation in the amplitude and pqlarity of an ob-
served physical quantity produced by a process whose mechanisms we
desire to understand by experimental investigation.

The requirement that the variation be produced by a mechanism
we are interested in is of basic importance and brings us to con-
sider at once, noise, the inseparable companion of signal.

Noise: A variation in the size of an observed physical quan-
tity we are investigating produced by a process or an aspect of a
process that we have no present interest in.

Data: Some combination, often additive, of signal and noise.
The additive situations are easiest to deal with in terms of analy-
sis and interpretation of results. In much of what follows we will
assume it applies. In general, however, additivity should not be

taken for granted.
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The errant course of scientific progress is such that often
what is considered to be a signal in one investigation turns out
to be noise in another. Or more colloquially, one man's signal
is another man's noise.

The variations in the size of a physical quantity are often
time-dependent. When they are, the data is said to be a function
of time and written x(t). Temporal data variation is most con-
venient for us to consider and also most appropriate since a real-
time computer generally accepts data in time sequential form.
However, we may also profitably consider data which are functions
of such variables as distances or angle, for it is usually a simple
matter to convert them into functions of time by a signal trans-
ducer. As an example, a scanning densitometer converts the spa-
tially varying density of a translucent object into a function of
time as the densitometer is moved over the scanned object. An
oscilloscope screen is an example of the process in reverse for
there the time-varying data is converted into a function of dis-
tance along the horizontal axis of the oscilloscope screen. Here-
after, when we mention data signals and noise, we will consider
them to be temporally varying.

We are interested in establishing the basic principles of a
wide assortment of procedures by which we analyze the signallike
data of neurobiological investigations. Temporally generated
signals and noises exhibit a wide variety of waveform features or
parameters, and it is essential to classify them according to such
features, for the validity of much of the subsequent data proces=-
sing depends upon the presence or magnitude of these features. The
following pages contain a discussion of some of the properties of
signals to serve as the basis of understanding the signal analysis

procedures and techniques to be described in later chapters.,

1.2, CONTINUOUS SIGNALS AND THEIR
DISCRETE COUNTERPARTS

Let us begin with data which consist only of signals. A
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signal is said to be continuous if it is defined at all instants
of time during which it occurs. A continuous signal may, however,
possess discontinuities or sudden changes in amplitude at certain
instants of time. At these instants the slope of the signal is
infinite. At other times the signal amplitude changes gradually
so that by choosing an interval short enough, the corresponding
change in amplitude can be made as small as we like. While con-
tinuous signals without discontinuities are the rule in such bio-
logical phenomena as the EEG, deliberately generated discontinuous
signals may be generated by the instrumentation associated with
neurobiological investigations. As an example, the signal pro-
duced by a rat when it pushes a switch to obtain food is discon-
tinuous. This type of signal is referred to as a step function.
Illustrations of continuous and discontinuous signals are shown

in Fig. l.1. It is also to be noted that whether continuous or
not, the signals are always single valued: they have only one
value at any particular instant in time. A particularly interest-
ing and important discontinuous signal is the unit step signal of
Fig. l.1l(c):

<
‘ 0 when t < td,

u(t) = (1.1)
l 1 when ¢ > ¢
d
td is the instant of discontinuity. The equation indicates that
the signal jumps to 1 as soon as t becomes greater than t The

unit step is used, among other purposes, to describe a st?mulus
that has a sudden onset.

Besides speaking of a continuous signal, x(t), we will also
have occasion to speak of its time derivatives, the first deriva-
tive being written dx(t)/dt or, alternatively, x’(t). The first
derivative is, of course, the time rate of change of the variable.
When it is zero, the variable itself is at a local maximum or
minimum value or, less frequently, at an inflection point. (The
derivative of a constant signal is always zero.) This property
is often used in determiniﬂg when a spikelike waveform reaches a

maximum or minimum. A peak detection device which essentially
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Fig. 1.1. (a) A continuous signal; (b) a discontinuous
signal; (c) the unit step u(t), showing step onset at t = td'
takes the time derivative of the waveform is commonly employed for
this. When its output, the waveform time derivative, goes through
zero in a negative direction, a positive maximum has occurred;
when it goes through zero in a positive direction, a negative
maximum has occurred. Figure 1l.2(a) illustrates the situation
for the former case. The first derivative is also important in
indicating when the signal is changing most rapidly because it has
its greatest value at that time. A positive maximum in the first
derivative indicates the time when the signal is increasing most
rapidly; a negative maximum, when it is decreasing most rapidly.
Just as a continuous signal may exhibit discontinuities, so may
its derivatives. A discontinuity in the first derivative occurs
when there is a cusp in the original signal. An example is the

sawtooth signal of Fig. 1l.2(b). When it is at its maximum and
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Fig. 1.2. (a) Above, a continuous signal; below, its time
derivative. The negative and positive going zero crossings of
the derivative correspond to positive and negative peaks in the
signal. (b) Above, a periodic sawtooth signal; below, its time
derivative which is a periodic discontinuous square wave.
minimum values, discontinuities occur in its first derivative,

a square wave.

The derivative operation is not without practical difficul-
ties since noise contributions tend to corrupt the derivative
measurement. In computer analysis of data, the derivative opera-
tion is approximated by comparing successive sampled values of the
signal with one another to see when maximum and minimum rates of
change occur. Although this is an approximation, the results are
often more than adequate. It is worth noting here that approxima-
tion is different from estimation, the latter being a statistical
procedure whose meaning will be made clear in the subsequent pages.

In contrast to temporally continuous (T-continuous) signals
are the temporally discrete (T-discrete) signals. These are sig-
nals which exist only at discrete instants in time. For our pur-
poses the most important discrete signals are those which occur
when a continuous signal has its amplitude measured or sampled at
discrete instants of time that are usually equally spaced. A

T-discrete signal is thus a sequence of measurements xl, X1 eeer
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xT lasting for the duration of the time the signal is observed.

In digital data processing it is furthermore usually quantized in
amplitude by an analog-to~digital converter. This gives it the
property of being amplitude discrete (A-discrete). The result is a
signal, T- and A-discrete, which provides the basic data thereafter
for all subsequent computer analyses of the original signal.

Having introduced the continuous signal and its sampled T-
discrete representation, it is useful to establish here a form of
notation which permits us to distinguish between them with a mini-
mum amount of confusion. We will use the symbol ° to distinguish
a sampled T-discrete signal from its continuous source signal.

We will drop the ° when no confusion seems possible. Similarly,

we will use t to represent continuous time and t°A to represent
those instants that a signal is sampled at a uniform rate. A is
the interval between neighboring samples, and t° is an integer-
valued index: 1, 2, 3, ..., etc. Signal analyses are often most
easy to describe when A = 1., This results in no loss of generality.
When there is no possibility of confusion, the A will be dropped.

The signals or data handled by a digital computer are dis-
crete not only in time but also in amplitude. This arises from the
fact that the amplitude of a signal at a particular sampling instant
is represented as a number within the computer, a number containing
a limited number of digits or bits depending upon the computer's
structure. To arrive at this numeric representation a continuous
signal is first transformed into its A-discrete amplitude version
by quantization in an analog-to-digital (A-D) converter. At each
sampling time the quantization procedure assigns to the signal
amplitude one of a finite number of levels. This level has a
numeric value which represents the sample in subsequent data analy-
sis computations. The subject of A-D conversion, or quantization,
is discussed more thoroughly in Chapter 2.

Perhaps the simplest way of reconstructing a continuous
signal from a set of its samples is shown in Fig. 1.3. Here the

signal is assumed to remain constant at its sampled value for the
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Fig. 1.3. (a) Above, a signal with a discontinuity between
t = 4 and 5; below, a reconstruction of that signal by interpola-
tion with a constant value between sampling instants. (b) Above,
another continuous signal fluctuating rapidly between the 4th and
5th sampling instants. Note how the same type of sampling recon-
struction totally lacks evidence of the rapid fluctuation of the
original.
time interval between the present and the next sample time. It is
important to recognize that the sampling and interpolation process
can produce severe alterations of the signal depending upon the
interrelationships between signal and sampling parameters. Two
of the simplest errors are seen in Fig. 1.3 where in (a) a discon-
tinuity is lost and in (b) a rapidly fluctuating component is
suppressed because the sampling rate is too low. This type of
error occurs regardless of how the interpolation between sampling
instants is performed. A more thorough discussion of sampling
problems is also presented in Chapter 3.

In some cases a signal is intrinsically T-discrete as for
example is the count of the number of events occurring within an
interval of time, such as the number of times an EEG waveform has
a zero-crossing (a transition through zero amplitude) in one second.
A second example is a list of measurements characterizing the
structure of an object. It is important to note, however, that in
the latter example the order in which the measurements are placed
into a sequence may be of little or no importance. In temporal

measurements or in measurements that are functions of a scanning



