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Introduction

Partial differential equations is a many-faceted subject. Created to describe the
mechanical behavior of objects such as vibrating strings and blowing winds, it
has developed into a body of material that interacts with many branches of math-
ematics, such as differential geometry, complex analysis, and harmanic analysis,
as well as a ubiquitous factor in the description and elucidation of problems in
mathematical physics.

This work is intended to provide a course of study of some of the major aspects
of PDE. It is addressed to readers with a background in the basic introductory grad-
uate mathematics courses in American universities: elementary real and complex
analysis, differential geometry, and measure theory.

Chapter 1 provides background material on the theory of ordinary differential
equations (ODE). This includes both very basic material—on topics such as the
existence and uniqueness of solutions to ODE and explicit solutions to equations
with constant coefficients and relations to lincar algebra—and more sophisticated
results—on flows generated by vector fields, connections with differential geom-
etry, the calculus of differential forms, stationary action principles in mechanics,
and their relation to Hamiltonian systems. We discuss equations of relativistic
motion as well as equations of classical Newtonian mechanics. There are also
applications to topological results, such as degree theory, the Brouwer fixed-point
theorem, and the Jordan-Brouwer separation theorem. In this chapter we also treat
scalar first-order PDE, via Hamilton-Jacobi theory.

Chapters 2 through 6 constitute a survey of basic linear PDE. Chapter 2 begins
with the derivation of some equations of continuum mechanics in a fashion similar
to the derivation of ODE in mechanics in Chapter 1, via variational principles. We
obtain equations for vibrating strings and membranes; these equations are not
necessarily linear, and hence they will also provide sources of problems later,
when nonlinear PDE is taken up. Further material in Chapter 2 centers around the
Laplace operator, which on Euclidean space R" is

2 62
Az e e ——,
N P +ooot o
and the linear wave equation,
3%u
(2) -37 —Au=0.

We also consider the Laplace operator on a general Riemannian manifold and
the wave equation on a general Lorentz manifold. We discuss basic consequences
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of Green's formula, including energy conservation and finite propagation speed
for solutions to linear wave equations. We also discuss Maxwell’s equations for
electromagnetic fields and their relation with special relativity. Before we can
establish general results on the solvability of these equations, it is necessary to
develop some analytical techniques. This is done in the next couple of chapters.

Chapter 3 is devoted to Fourier analysis and the theory of distributions. These
topics are crucial for the study of linear PDE. We give a number of basic applica-
tions to the study of linear PDE with constant coefficients. Among these applica-
tions are results on harmonic and holomorphic functions in the plane, including a
short treatment of elementary complex function theory. We derive explicit formu-
las for solutions to Laplace and wave equations on Euclidean space, and also the
heat equation,

du
3 — - Au=0.
® ot “

We also produce solutions on certain subsets, such as rectangular regions, using the
method of images. We include material on the discrete Fourier transform, germane
to the discrete approximation of PDE, and on the fast evaluation of this transform,
the FFT. Chapter 3 is the first chapter to make extensive use of functional analysis.
Basic results on this topic are compiled in Appendix A, Outline of Functional
Analysis.

Sobolev spaces have proven to be a very effective tool in the existence theory
of PDE, and in the study of regularity of solutions. In Chapter 4 we introduce
Sobolev spaces and study some of their basic properties. We restrict attention
to L2-Sobolev spaces, such as HX(R"), which consists of L? functions whose
derivatives of order < k (defined in a distributional sense, in Chapter 3) belong to
L%(R™), when k is a positive integer. We also replace k by a general real number
s. The LP-Sobolev spaces, which are very useful for nonlinear PDE, are treated
later, in Chapter 13.

Chapter 5 is devoted to the study of the existence and regularity of solutions to
linear elliptic PDE, on bounded regions. We begin with the Dirichlet problem for
the Laplace operator,

O] Au=f ong, u=g onds,

and then treat the Neumann problem and various other boundary problems, in-
cluding some that apply to electromagnetic fields. We also study general boundary
problems for linear elliptic operators, giving a condition that guarantees regularity
and solvability (perhaps given a finite number of linear conditions on the data).
Also in Chapter 5 are some applications to other areas, such as a proof of the Rie-
mann mapping theorem, first for smooth simply connected domains in the complex
plane C, then, after a reatment of the Dirichlet problem for the Laplace operator
on domains with rough boundary, for general simply connected domains in C. We
also develop Hodge theory and apply it to DeRham cohomology, extending the
study of topological applications of differential forms begun in Chapter 1.
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In Chapter 6 we study linear evolution equations, in which there is a “time”
variable ¢, and initial data are given at ¢t = (. We discuss the heat and wave
equations. We also treat Maxwell’s equations, for an electromagnetic field, and
more general hyperbolic systems. We prove the Cauchy-Kowalewsky theorem, in
the linear case, establishing local solvability of the Cauchy initial value problem
for general linear PDE with analytic coefficients, and analytic data, as long as
the initial surface is “noncharacteristic.” The nonlinear case is treated in Chapter
16. Also in Chapter 6 we treat geometrical optics, providing approximations to
solutions of wave equations whose initial data either are highly oscillatory or
possess simple singularities, such as a jump across a smooth hypersurface.

Chapters 1 through 6, together with Appendix A and Appendix B, Manifolds,
Vector Bundles, and Lie Groups, make up the first volume of this work. The second
volume consists of Chapters 7 through 12, covering a selection of more advanced
topics in linear PDE, together with Appendix C, Connections and Curvature.

Chapter 7 deals with pseudodifferential operators (¢ DOs). This class of opera-
tors includes both differential operators and parametrices of elliptic operators, that
is, inverses modulo smoothing operators. There is a “symbol calculus” aliowing
one to analyze products of ¥ DOs, useful for such a parametrix construction. The
L2-boundedness of operators of order zero and the Garding inequality for elliptic
¥ DOs with positive symbol provide very useful tools in linear PDE, which will
be used in many subsequent chapters.

Chapter 8 is devoted to spectral theory, particularly for self-adjoint elliptic
operators. First we give a proof of the spectral theorem for general self-adjoint
operators on Hilbert space. Then we discuss conditions under which a differential
operator yields a self-adjoint operator. We thendiscuss the asymptotic distribution
of eigenvalues of the Laplace operator on a bounded domain, making use of a
construction of a parametrix for the heat equation from Chapter 7. In the next
four sections of Chapter 8 we consider the spectral behavior of various specific
differential operators: the Laplace operator on a sphere, and on hyperbolic space,
the “harmonic oscillator”

&) -A+|xp,
and the operator

K
6 -A - —
6) i

which arises in the simplest quantum mechanical model of the hydrogen atom.
Finally, we consider the Laplace operator on cones.

In Chapter 9 we study the scattering of waves by a compact obstacle K in R>.
This scattering theory is to some degree an extension of the spectral theory of the
Laplace operator on R? \ K, with the Dirichlet boundary condition. In addition to
studying how a given obstacle scatters waves, we consider the inverse problem:
how to determine an obstacle given data on how it scatters waves.
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Chapter 10 is devoted to the Atiyah-Singer index theorem. This gives a formula
for the index of an elliptic operator D on a compact manifold M, defined by

@) Index D = dimker D — dim ker D*.

We establish this formula, which is an integral over M of a certain differential
form defined by a pair of “‘curvatures,” when D is a first order differential operator
of “Dirac type,” aclass that contains many important operators arising from differ-
ential geometry and complex analysis. Special cases of such a formula include the
Chern-Gauss-Bonnet formula and the Riemann-Roch formula. We also discuss
the significance of the latter formula in the study of Riemann surfaces.

In Chapter 11 we study Brownian motion, described mathematically by Wiener
measure on the space of continuous paths in R". This provides a probabilistic
approach to diffusion and it both uses and provides new tools for the analysis of
the heat equation and variants, such as

ou

8) E = —Au + Vu,

where V is areal-valued function. There is an integral formula for solutions to (8),
known as the Feynman-Kac formula; it is an integral over path space with respect
to Wiener measure, of a fairly explicit integrand. We also derive an analogous
integral formula for solutions to
%) % = —Au + Xu,

at
where X is a vector field. In this case, another tool is involved in constructing the
integrand, the stochastic integral. We also study stochastic differential equations
and applications to more general diffusion equations.

In Chapter 12 we tackle the 3-Neumann problem, a boundary problem for an
elliptic operator (essentially the Laplace operator) or a domain £ C C”, which
is very important in the theory of functions of several complex variables. From a
technical point of view, it is of particular interest that this boundary problem does
not satisfy the regularity criteria investigated in Chapter 5. If  is “strongly pseu-
doconvex,” one has instead certain “subelliptic estimates,” which are established
in Chapter 12.

The third and final volume of this work contains Chapters 13 through 18. It is
here that we study nonlincar PDE.

We prepare the way in Chapter 13 with a further development of function space
and operator theory, for use in nonlinear analysis. This includes the theory of
LP-Sobolev spaces and Holder spaces. We derive estimates in these spaces on
nonlinear functions F(u), known as “Moser estimates,” which are very useful.
We extend the theory of pseudodifferential operators to cases where the symbols
have limited smoothness, and also develop a variant of ¥ DO theory, the theory
of “paradifferential operators,” which has had a significant impact on nonlinear
PDE since about 1980. We also estimate these operators, acting on the function
spaces mentioned above. Other topics treated in Chapter 13 include Hardy spaces,
compensated compactness, and “fuzzy functions.”
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Chapter 14 is devoted to nonlinear elliptic PDE, with an emphasis on second
order equations. There are three successive degrees of nonlinearity: semilinear
equations, such as

(10) Au = F(x,u, Vu),
quasi-linear equations, such as

) D @ (x,u, Vu)d;du = F(x, u, Vu),
and completely nonlinear equations, of the form

(12) G(x, D’u) =0.

Differential geometry providesa rich source of such PDE, and Chapter 14contains
anumber of geometrical applications. Forexample, to deform conformally a metric
on asurface so its Gauss curvature changes from k(x) to K (x), one needs to solve
the semilinear equation

(13) Au = k(x) — K (x)e*.

As another example, the graph of a function y = u(x) is a minimal submanifold
of Euclidean space provided u solves the quasilinear equation

(14) (1 +1Vul)au + (Vi) - Hu)(Vu) = 0,

called the minimal surface equation. Here, H(u) = (3 ;3xu) is the Hessian matrix
of u. On the other hand, this graph has Gauss curvature K (x) provided u solves
the completely nonlinear equation

(15) det H(u) = K(x)(1 + (Vu‘z)(n+2)/2‘

a Monge-Ampére equation. Equations (13)—(15) are all scalar, and the maximum
principle plays a useful role in the analysis, together with a number of ather tools.
Chapter 14 also treats nonlinear systems. Important physicai examples arise in
studies of elastic bodies, as well as in other areas, such as the theory of liquid
crystals, Geometric examples of systems considered in Chapter 14 include equa-
tions for harmonic maps and equations for isometric imbeddings of a Riemannian
manifold in Euclidean space.

In Chapter 15, we treat nonlinear parabolic equations. Partly echoing Chapter
14, we progress from a treatment of semilinear equations,

d
(16) —3; = Lu+ F(x,u, Vu),

where L is a linear operator, such as L = A, to a treatment of quasi-linear
equations, such as

ou i
(17 = Y djat(r, x, w)du + X ().

(We do very little with completely nonlinear equations in this chapter.) We study
systems as well as scalar equations. The first application of (16) we consider is
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10 the parabolic equation method of constructing harmonic maps. We also con-
sider “reaction-diffusion” equations, £ x ¢ systems of the form (16), in which
F(x, u, Vu) = X(u), where X is a vector field on R¢, and L is a diagonal opera-
tor, with diagonal eleiments a; A, a; > 0. These equations arise in mathematical
models in biology and in chemistry. For example, u = (u1, ..., u¢) might repre-
sent the population densities of each of £ species of living creatures, distributed
over an area of land, interacting in 2 manner described by X and diffusing in a
manner described by a;A. If there is a nonlinear (density-dependent) diffusion,
one might have a system of the form (17).

Another problem considered in Chapter 15 models the melting of ice; one has
a linear heat equation in a region (filled with water) whose boundary (where the
water touches the ice) is moving (as the ice melts). The nonlinearity in the problem
involves the description of the boundary. We confine our analysis to a relatively
simple one-dimensional case.

Nonlinear hyperbolic equations are studied in Chapter 16. Here continuum me-
chanics is the major source of examples, and most of them are systems, rather
than scalar equations. We establish local existence for solutions to first order hy-
perbolic systems, which are either “symmetric” or “symmetrizable.”” An example
of the latter class is the following system describing compressible fluid flow:

dp
at

for a fluid with velocity v, density p, and pressure p, assumed to satisfy a relation
p = p(p), called an “equation of state.” Solutions to such nonlinear systems tend
to break down, due to shock formation. We devote a bit of attention to the study
of weak solutions to nonlinear hyperbolic systems, with shocks.

We also study second-order hyperbolic systems, such as systems for a k-
dimensional membrane vibrating in R", derived in Chapter 2. Another topic cov-
ered in Chapter 16 is the Cauchy-Kowalewsky theorem, in the nonlinear case. We
use a method introduced by P. Garabedian to transform the Cauchy problem for
an analytic equation into a symmetric hyperbolic sysiem.

In Chapter 17 we study incompressible fluid flow. This is governed by the Euler
equation

a 1
(18) 5—?+V.,v+;gradp=0, +V,p+pdive =0,

(19) 4 V= —gudp,  divy=0,

in the absence of viscosity, and by the Navier-Stokes equation
dv .

(20) e + V,v=vLv — grad p, divv =0,

in the presence of viscosity. Here L is a second-order operator, the Laplace operator
for a flow on flat space; the “viscosity” v is a positive quantity. The equation
(19) shares some features with quasilinear hyperbolic systems, though there are
also significant differences. Similarly, (20) has a lot in common with semilinear
parabolic systems.
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Chapter 18, the last chapter in this work, is devoted to Einstein’s gravitational
equations:

(21) ij = 87TKTJ}.

Here G j; is the Einstein tensor, givenby G jx = Ricjx —(1/2)5g i, where Ricj is
the Ricci tensor and S the scalar curvature, of a Lorentz manifold (or “spacetime”)
with metric tensor g;x. On the right side of (21), T is the stress-energy tensor of the
matter in the spacetime, and « is a positive constant, which can be identified with
the gravitational constant of the Newtonian theory of gravity. In local coordinates,
G ji has a nonlinear expression in terms of g ;¢ and its second order derivatives. In
the empty-space case, where Tj; = 0, (21) is aquasilinear second order system for
gjx- The freedom to change coordinates provides an obstruction to this equation
being hyperbolic, but one can impose the use of “harmonic” coordinates as a
constraint and transform (21) into a hyperbolic system. In the presence of matter
one couples (21) to other systems, obtaining more elaborate PDE. We treat this
in two cases, in the presence of an electromagnetic field, and in the presence of a
relativistic fluid.

In addition to the 18 chapters just described, there are three appendices, already
mentioned above. Appendix A gives definitions and basic properties of Banach
and Hilbert spaces (of which L7-spaces and Sobolev spaces are examples), Fréchet
spaces (such as C*(R")), and other locally convex spaces (such as spaces of dis-
tributions). It discusses some basic facts about bounded linear operators, including
some special properties of compact operators, and also considers certain classes
of unbounded linear operators. This functional analytic material plays a major role
in the development of PDE from Chapter 3 onward.

Appendix B gives definitions and basic properties of manifolds and vector bun-
dles. It also discusses some elementary properties of Lie groups, including a little
representation theory, useful in Chapter 8, on spectral theory, as well as in the
Chern-Weil construction.

Appendix C, Connections and Curvature, contains material of a differential geo-
metric nature, crucial for understanding many things done in Chapters 10-18. We
consider connections on general vector bundies, and their curvature. We discuss
in detail special properties of the primary case: the Levi-Civita connection and
Riemann curvature tensor on a Riemannian manifold. We discuss basic proper-
ties of the geometry of submanifolds, relating the second fundamental form to
curvature via the Gauss-Codazzi equations. We describe how vector bundles arise
from principal bundles, which themselves carry various connections and curva-
ture forms. We then discuss the Chemn-Weil construction, yielding certain closed
differential forms associated to curvatures of connections on principal bundles.
We give several proofs of the classical Gauss-Bonnet theorem and some related
results on two-dimensional surfaces, which are useful particularly in Chapters 10
and 14. We also give a geometrical proof of the Chern-Gauss-Bonnet theorem,
which can be contrasted with the proof in Chapter 10, as a consequence of the
Atiyah-Singer index theorem.
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We mention that, in addition to these “global” appendices, there are appendices
to some chapters. For example, Chapter 3 has an appendix on the gamma function.
Chapter 6 has two appendices; Appendix A has some results on Banach spaces of
harmonic functions useful for the proof of the linear Cauchy-Kowalewsky theo-
rem, and Appendix B deals with the stationary phase formula, useful for the study
of geometrical optics in Chapter 6 and also for results later, in Chapter 9. There
are other chapters with such “local” appendices. Furthermore, there are two sec-
tions, both in Chapter 14, with appendices. Section 6, on minimal surfaces, has a
companion, §6B, on the second variation of area and consequences, and Section
12, on nonlinear elliptic systems, has a companion, §12B, with complementary
material.

Having described the scope of this work, we find it necessary to mention a
number of topics in PDE that are not covered here, or are touched on only very
briefly.

For example, we devote little attention to the real analytic theory of PDE. We
note that harmonic functions on domains in R” are real analytic, but we do not
discuss analyticity of solutions to more general elliptic equations. We do prove
the Cauchy-Kowalewsky theorem, on analytic PDE with analytic Cauchy data.
We derive some simple results on unique continuation from these few analyticity
results, but there is a large body of lore on unique continuation, for solutions to
nonanalytic PDE, neglected here.

There is litile material on numerical methods. There are a few references to
applications of the FFT and of “splitting methods.” Difference schemes for PDE
are mentioned just once, in a set of exercises on scalar conservation laws. Finite
element methods are neglected, as are many other numerical techiques.

There is a large body of work on free boundary problems, but the only one
considered here is a simple one space dimensional problem, in Chapter 15.

While we have considered a variety of equations arising from classical physics
and from relativity, we have devoted relatively little attention to quantum mechan-
ics. We have considered one quantum mechanical operator, given in formula (6)
above. Also, there are some exercises on potential scattering mentioned in Chapter
9. However, the physical theories behind these equations are not discussed here.

There are a number of nonlinear evolution equations, such as the Korteweg-
deVries equation, that have been perceived to provide infinite dimensional ana-
logues of completely integrable Hamiltonian systems, and to arise “universaily” in
asymptotic analyses of solutions to various nonlinear wave equations. They are riot
here. Nor is there a treatment of the Yang-Mills equations for gauge fields, with
their wonderful applications to the geometry and topology of four dimensional
manifolds.

Of course, this is not a complete list of omitted material. One can go on and on
listing important topics in this vast subject. The author can at best hope that the
reader will find it easier to understand many of these topics with this book, than
without it.
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Function Space and Operator Theory for
Nonlinear Analysis

Introduction

This chapter examines a number of analytical techiques, which will be applied
to diverse nonlinear problems in the remaining chapters. For example, we study
Sobolev spaces based on L?, rather than just L2. Sections 1 and 2 discuss the
definition of Sobolev spaces H kp for k € Z*, and inclusions of the form H*? ¢
LY. Estimates based on such inclusions have refined forms, due to E. Gagliardoand -
L. Nirenberg. We discuss these in §3, together with results of J. Moser on estimates
on nonlinear functions of an element of a Sobolev space, and on commutators of
differential operators and multiplication operators. In §4 we establish some integral
estimates of N, Trudinger, on functions in Sobolev spaces for which L*°-bounds
just fail. In these sections we use such basic tools as Holder’s inequality and
integration by parts.

“The Fourier transform is not as effective for analysis on L? as on L. One result
that does often serve when, in the L2-theory, one could appeal to the Plancherel
theorem, is Mikhlin's Fourier multiplier theorem, established in §5. This enables
interpolation theory to be applied to the study of the spaces H*-?, for noninteger
s, in §6. In §7 we apply some of this material to the study of L?-spectral theory
of the Laplace operator, on compact manifolds, possibly with boundary.

In §8 we study spaces C" of Holder continuous functions, and their relation
with Zygmund spaces C]. We derive estimates in these spaces for solutions to
elliptic boundary problems.

The next two sections extend results on pseudodifferential operators, introduced
in Chapter 7. Section 9 considers symbols p(x, &) with minimal regularity in x.
We derive both L?- and Holder estimates. Section 10 considers paradifferential
operators, a variant of pseudodifferential operator calculus particularly well suited
to nonlinear analysis. Sections 9 and 10 are largely taken from [T2].

In §11 we consider “fuzzy functions,” consisting of a pair (f, 1), where f
is a function on a space Q and X is a measure on Q x R, with the property
that ff yo(x) dA(x,y) = [@(x) f(x) dx. The measure A is known as a Young




