Fundamentals of Software Engineering
(Second Edition)

B T FEE A

(58 ZhR - ®EIAR)

Carlo Ghezzi
[&] MehdiJazayeri &
Dino Mandrioli

Fundamentals of Software Engineering
(Second Edition)

G TIEEAM

Carlo Ghezzi
[#] Mehd Jazayeri
Dino Mandnoli

@mwﬂma

www.infopower.com.cn

Fundamentals of Software Engineering, 2 edition (ISBN 0-13-305699-6)

Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli

Copyright © 2003 Pearson Education, Inc..

Original English Language Edition Published by Prentice Hall PTR.

All rights reserved. A

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2006.

A H S ENRR B Pearson Education FEAUH B AR M8 P IS (FHs. B MESTRIX M4
WHUXERAN) xR, &RAT.
AL HIEE BIIVF, RNBUER ARG B R BREAES.

A A5 BI04 41 Pearson Education B tAVFA, KAREHE AR,

AR URRAUR EREAFBILE B¥: 01-2005-5626

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong
SAR and Macao SAR).

R T NRSHESER (REFETREE. R SHTBRATEEBHX) BfRiT.

BI-BERME (CIP) iR

RO THRER: 8 2 B/ (B) #F (Ghezzi,C.), (&) &R (JazayeriM.), (&) 45
(Mandrioli,D.) #. —¥EA. —ibx: bEENHER, 2006

(b2 St EHLRL Y B R 5D

ISBN 7-5083-3876-6

L. N.0#%.Q%.08. NUHIB-BELR—HHM-%XT N.IPILS

HERA BB CIP MIBBFE (2005) % 134046 &

M B % BRI EIRSEEH RS _

T A RUTREER (B - 25

% %: (&) Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli

TR Fak

HARRAT: P EE S R ‘
ik ERHZEWHB6 S MBS&E: 100044

Hif: (010) 88515918 4 HE. (010) 88518169
B Bl dbmURECERRI
FFARRF: 185%233 . En 7K. 38.25

38 5: ISBN 7-5083-3876-6

B R: 20065 1 AIERE 1R 2006 £ 1 A 1 KENRY
o e 58.00 T

IR BEDLR

Hi e e W

BT 20 S P NI R 22 3R 0, kR S BR1E BALIRBIENET E, ik AKR A
ZIA RS2 B R M A BRI EEIX R F b R e, BRR AT R BBk,
BB AT, 1A RS B R B EAM &S HEF R T T A ¥ E 5E,
SR FRRUE S 21 LR — AR AR N T ESRER ABET FHURE OB R [HR,
LA EM KR ERE, BREBRAAA BRI AR, UEEIRRHETEEK
HHARHERELH TRANKRE, E T - #HAEEEKEW NS HEM, Bk, LA,
S NSEAEE S X ERMS AT EIEY, BREEABFERRIMEMNER, XX
R ETEHIHEFVORE.

TWEE) A BHB B TS CHELE 6 Mk, BB R, K. g
ink, BHTHEAEL BN A, BT ARIEE I EL R REE SR 0ER.
B S5EREAEERANLN ZHE, RKTFEENHEREE, FEE) SR EN
HT “EHIE BT EHREER” KHEBGTR. AR B H R RIR R BB AL
U L #)——Pearson #{ % H (Addison-Wesley. Prentice-Hall 6% A H FB FAF) &1,
WA B TR R AR HEMRR, HfR 7 M EBOBURES .

ARIEXEHM ST SR, FHBANBRE, BOEENEL T b ERER. LK
FE-MBERBMARNERBIRERAR, HHRRBEEEERMT RLE. BANESE, W
WTREHELE. TUETROREN, SHEBOEERARGET TIAEHR, HEATHER
SR RF KPR E R BRI, X ESMRHE T BRI, B T IRERREE iR
EREHHFHE, AERFEHLTENRERFUAA RS, RIEDENK “ it
R HRT IR E .

TRATIA 2002 R TR EFREFRXEEMORY L, FBRALTERFITL. M
REF, WA FEHPIRAERR, RHKE, HHFEBEEEMFEENE6

L BAHBREARBEAREY, FLREMERSYHEEEE, CAHISNE
RitE, MOLERRBEIRE, B&—TraiEtt.

2. LHFHEHLE B ORB N ER, RNRSSUWEETY, FREESVEBIEHR
M AT R R

3. EMHAARFTBEM R A, FRHRERREWRENOFERER, o FE R A
AR, ROHEENHEER.

4. RS OMBAAEFRERKELROER, PRIGERE, Hnme ok,
IR FM B PR i

5. iﬁﬁML@tﬁWi?ﬁWﬁﬁFﬁ@]i’%i&‘3’?'@1’?%‘%???@@%73.&’ X R RER
B

6. XA RGN TAE, WEK. GwiE. HR. EDRUEHAT TR R R

HUEFHRERRESNEERITR, 20 KESREHENERL RELER, A
OE R RSN R W, FIAE BRI XEEMBEEL—FAREE
FA I KIF, 0 Stallings, Date, Ullman, Aho, Bryant, Sedgewick %, Hfi1fI{E ¥R —
FRERR, A £ B 4h—Ri K% 0 Stanford University, MIT, UC Bekerley, Camegie Mellon
Univeristy, University of Michigan %K 4 06 . LT 058 — B B RRGH RV HE 30 B,
WAB R ROE BUREH . BIERK. IFEHRREH . BIBE. ®RIFFRE. K4 THE.
B, A S NES . BEEE S NS W O MER, BAREEAEN S LK
FEK,

Wesh, AT BT KAREIT NN A RFIEM IR, 2R &R, BRI
S HRRHLA T T KAEA R SE B TR, HERURR A 75 [AR T 0T, AR H A% &R
FIEMPRBFLR, EFREEMNESENNARGEBEE .

T EATN EA BRI EHEEFEARERE ERALE, FEE8. 8iF. SN T HE
FEHEMLETERFEERRBZIL, BE AMAMEEREMIPNRINIENEEE
ZRIAMABBEAT TSR, BITKBERTKL:

B FHRf:: csbook@cepp.com.cn

B AR Hi%: 010-88515918-300

BRMBE: LRT RS = R 6 SchE&) MR

BB GRS : 100044 '

Preface to the Second Edition

The first edition of this book was published in 1991. Since then, there has been a lot of
progress in computing technology and also in software engineering. Certainly the pro-
liferation of the Internet has had a profound influence on education, research, devel-
opment, business, and commerce. We decided to produce this second edition in order
to bring the book up to date with respect to the advances in software engineering in
the last 10 years.

We were pleased to find that the basic premise of the book—the durability and
importance of principles—has been borne out by the passage of time: Even though the
technology has improved, principles of software engineering have remained the same.
We have therefore been able to update every chapter without changing the original
structure of the book. The following is still the structure:

Introduction: Chapters 1 -3;

The product: Chapters 4 -6;

Process and management: Chapters 7 -8;
Tools and environments: Chapter 9.

The product-related chapters follow the sequence consisting of design (4),
specification (5), and verification (6). This is different from the approach taken by
other books, which cover specification before design. The reason for our choice fol-
lows from the principles-based approach of the book. All of these activities—design,
specification, and verification—are basic activities that must be learned and applied
throughout the software life cycle. For example, design is something we do not only
with software architecture, but also with software specifications. The modular design
approach helps us structure software and also the specification documents. Other
books present specification first and then design, allegedly because—according to
the traditional software processes—first we specify a software and then we design it.
By contrast, we believe that learning about the design activity and approaches first,
creates the needed motivation for the study of specification and provides the skills
and techniques for structuring those specifications.

While all areas of software engineering have evolved since the first edition of the
book was written, the area of tools and environments has changed substantially.
Chapter 9, therefore, is revised considerably. Our approach in this chapter also is to
present primarily principles rather than specific tools. We have seen over the years that
tools change as technology evolves, and the choice of what particular tools to study
depends on the student’s environment and focus. We therefore cover a framework for
studying and evaluating software tools without a detailed look at any particular tools.

Besides many minor improvements and changes, we have made the following
major additions: -

xiii

xiv

Preface to the Second Edition

In Chapter 3, we have added two new case studies, one of a simple compiler and
the other of the elevator system that we use throughout much of the book. The two
case studies are complementary in that they deal with different application areas and
pose different design challenges. They are presented in this chapter in a simple and
intuitive way to get the student oriented towards thinking of system issues. They are
intended to illustrate the use of general principles with concrete examples.

In Chapter 4, we have extended the treatment of object orientation, software
architecture, components, and distributed systems.

In Chapter 5, we have added a treatment of Z and UML. A new section gives a
more systematic treatment of requirements engineering.

In Chapter 6, we have added model checking and GQM as evaluation and verifi-
cation techniques.

In Chapter 7, we have included a treatment of the unified process, the open-
source process, and the synchronize-and-stabilize process. We have also added a new
case study on requirements engineering.

In Chapter 8, we have added the capability maturity model and a description of
the Nokia software factories.

In Chapter 9, we have added a treatment of the concurrent versioning system
(CVS).

In Chapter 10, we have provided coverage of the Software Engineering Code
of Ethics.

In the appendix, we have added a new case study on the use of formal methods
in industry.

THE ROLE OF OBJECT ORIENTATION

The book covers the principles of object orientation in a balanced way, rather than as the
only way to do software engineering. Object-oriented analysis, design, and programming
have certainly evolved and become a dominant approach to software engineering. We
belicve, however, that the principles underlying software engineering are deeper than
objects. What the student should learn are principles and methods that can be used in dif-
ferent approaches. The student should learn how to choose between approaches and
should be able to apply object orientation when it is the right choice. For example, the stu-
dent should learn about information hiding before learning about objects and inheritance.

THE PURPOSE OF CASE STUDIES

The case studies presented throughout the book and also in the appendix have two
purposes. One is to present the issues discussed in a larger context, in order to give the
student a broader view of why the principles or techniques are important. The second
reason is to give those students who have not seen real projects a picture of realistic
projects. The case studies are necessarily simplified to focus on important issues, but we
have found that they are useful especially to less experienced students. The study of
software engineering poses a challenge in a university setting because the typical stu-
dent has not been exposed to the problems that software engineers face daily. These
case studies attempt to overcome this challenge.

Instructor Resources xv

INSTRUCTOR RESOURCES

A companion CD, including solutions and sample course sylllabi is available to instruc-
tors. A companion Web site is available through the publisher to both students and
instructors. You may contact the authors through the Web site. We welcome your feed-
back, comments, and suggestions.

CARLO GHEZZI
Milan, Italy

MEHDI JAZAYERI
Palo Alto, California

DINO MANDRIOLI
Lugano, Switzerland

Preface to the First Edition

This is a textbook on software engineering. The theme underlying the book is the
importance of rigor in the practice of software engineering. Traditional textbooks on
the subject are based on the lifecycle model of software development—that is, require-
ments, specification, design, coding, maintenance—examining each phase in turn. In
contrast, our presentation is based on important principles that can be applied inde-
pendently of the lifecycle model and often in several phases of the lifecycle. Our
emphasis is on identifying and applying fundamental principles that are applicable
throughout the software lifecycle.
The general characteristics of the book are the following:

* It deals with software engineering as opposed to programming. Thus, we do not
discuss any programming issues. For example, we omit any discussion of pro-
gramming language constructs such as goto, loops, etc. We believe that the stu-
dent of software engineering should have prior familiarity with these issues,
which are more properly covered in textbooks on programming languages. On
the other hand, we do discuss the issue of mapping software design constructs
into specific programming languages. We concentrate on intermodule issues
and assume as prerequisite the ability to program individual modules.

* It emphasizes principles and techniques as opposed to specific tools (which may
be used in examples). Many companies are actively developing software engi-
neering tools and environments today and we expect that better and more
sophisticated tools will be invented as our knowledge of software engineering
increases. Once the student understands the principles and techniques that the
tool is based on, mastery of the tool will be easy. The principles and techniques
are applicable across tools while mastering the use of any particular tool does
not better prepare the student for the use of other tools. Further, use of tools
without understanding their underlying principles is dangerous.

* It presents engineering principles; it is not an engineering handbook. Principles
are general and are likely to remain applicable for many years while particular
techniques will change due to technology, increased knowledge, etc. An engi-
neering handbook may be consulted to learn how to apply a particular tech-
nique: it contains a set of prescriptions. This book, on the other hand, aims to
enable the reader to understand why a particular technique should be used
and, just as important, why it should not be. Even though we do show how a
particular technique can be used to implement a given principle, our primary
emphasis is on the understanding of the why question.

This book embodies our beliefs in the use of fundamental principles and the impor-
tance of theory in the practice of engineering. We have used the material in this book
in both university and professional courses on various aspects of software engineering.

xvii

Xviii

Preface to the First Edition

AUDIENCE

This book is designed to be used as a textbook by students of software engineering
either in a classroom or for self-study. Professional engineers and managers will find
material here to convince them of the usefulness of modern practices of software engi-
neering and the need to adopt them. It may be used by professionals who are willing to
invest the time for serious studys; it is not really appropriate for a cursory reading. In
particular, wherever necessary, we have sacrificed breadth for depth. For the profes-
sional, the notes on further references will be especially helpful. An Instructor’s Manual
is available with ideas for course organizations and solutions to some of the exercises.

PREREQUISITES

The book is designed for junior, senior, or beginning-graduate level students in com-
puter science. The réader must have had a course in data structures and should be flu-
ent in one or more programming languages. We assume that the reader is already
proficient in programming. Analytical reasoning, although not strictly necessary. will
greatly enhance the ability of the reader to appreciate the deeper concepts of the
book. This skill is developed by mathematics courses such as calculus, discrete mathe-
matics, or-even better-theoretical computer science. “Mathematical maturity” is neces-
sary for the student of any engineering discipline.

ORGANIZATION AND CONTENT

Software engineering is a large, multi-dimensional discipline. Organizing a textbook
on the subject poses a challenge because a textbook should present material sequen-
tially, but the many facets of software engineering are so interrelated that there is no
optimal sequence of topics. We have organized this textbook based on the view that in
software engineering:

We are building a product: the software;
We use a process to build that product; and
We use tools in support of that process.

The book thus has three technical sections dealing in turn with the software
product (Chapters 4 through 6), the software engineering process and management
(Chapters 7 and 8), and the software engineering environment (Chapter 9). Chapters 1
through 3 form a general introduction to the field and the subsequent more technical
sections of the book.

In Chapter 2, we discuss the many facets of software and common desirable char-
acteristics for software. These characteristics impose constraints on the software builder
and the process to be used. In Chapter 3, we present principles for building high-quality
software. By studying principles rather than specific tools, the student gains knowledge
that is independent of a particular technology and application environment. Because
technology changes and environments evolve, the student should be armed with princi-
ples and techniques that can be utilized in different application areas. Chapters 4
through 8 present and discuss techniques for applying the principles of Chapter 3 to,
respectively, design, specification, verification, engineering process, and engineering

Laboratory Course xix

management. In Chapter 9, we discuss the use of computers themselves to help in the
building of software. We postpone the discussion of any specific tools to this chapter.

While the material in the first two sections should withstand the passage of time,
it is likely that the material in the third section will become outdated (we hope)
because newer and better tools are being developed. Since programming languages
are a fundamental tool of the software engineer, we use Chapter 9 as a bridge between
the design issues of Chapter 4 and specific programming language constructs.

EXERCISES
The book contains many exercises of three types:

e short, paper exercises, aimed at extending the knowledge gained from the
book or applying the knowledge more deeply; these exercises are interspersed
throughout the chapters. '

* longer paper exercises at the end of each chapter, requiring integration of the
material in the chapter.

* term-projects requiring the development of some substantial software system
by a small team.

Solutions to some of the exercises are provided at the end of each chapter. More
exercise solutions are given in the Instructor’s Manual.

CASE STUDIES

Several case studies are used in the text to demonstrate the integration of different
concepts and to contrast different approaches in realistic situations. In addition, three
case studies of real-life software engineering projects and their analyses are presented
at the end of the book. These case studies may be read and studied at different times
and for different purposes. From these case studies, the new student with little indus-
trial experience can gain a quick view of the diversity of problems faced in industrial
practice. The student with some experience perhaps will identify with certain aspects of
these case studies and learn from others. The case studies may be read concurrently
with the main text. Several exercises in the book refer to these case studies.

LABORATORY COURSE

Many software engineering courses combine lectures and a laboratory project. To do
this in a single semester is rather difficult. The teacher will find himself discussing orga-
nizational issues while the students are concentrating on their daily forays into debug-
ging. We believe that software engineering must be taught as all other engineering
disciplines by first providing the student with a solid foundation in the “theory.” Only
after this has been achieved will laboratory experience enhance the student’s knowl-
edge. This implies that the student project must start closer to the middle of the semes-
ter rather than at the beginning. In our view, a better approach is to spend one semester
on the theory and a second semester on the laboratory. The Instructor’s Manual offers
several ideas for organizing a laboratory course based on this text.

Xx Preface to the First Edition

READING GRAPH

The book may be read in different sequences and at different levels. Each of Chapters
4 through 7 contains material that may be skipped on the first reading or for a less
detailed study. Chapters 1 through 3 are required reading for the subsequent chapters.
The graph shows the dependencies among the chapters and the various paths through
the book. The notation nP refers to a partial reading of Chapter n, skipping some sec-
tions; nC stands for a complete reading.

The Instructor’s Manual discusses different course organizations based on the
book. The conventional one-semester project software engineering course may follow
the sequence: 1, 2, 3, 7P, SP, 4P, 6P, 8, 9, 10. We ourselves prefer the sequence 1,2, 3, 4P,
5P, 6P, 7P, 8,9, 10. In either case, the students should start on the project after 5P.

ACKNOWLEDGMENTS

We gratefully acknowledge reviews of earlier drafts provided by Reda A. Ammar of
the University of Connecticut, Larry C. Christensen of Brigham Young University,
William F. Decker of the University of Iowa, David A. Gustafson of Kansas State
University, Richard A. Kemmerer of the University of California at Santa Barbara,
John C. Knight of the University of Virginia, Seymour V. Pollack of Washington
University, and K. C. Tai of North Carolina State University.

We would also like to thank the following people who have provided valuable feed-
back on various drafts of the manuscript: Vincenzo Ambriola, Paola Bertaina, David
Jacobson, and Milon Mackey.

Hewlett-Packard Laboratories and Politecnico di Milano made it possible to
conceive this book by supporting a course offered by Mehdi Jazayeri at the
Politecnico di Milano during the spring of 1988. Alfredo Scarfone and HP Italiana
provided us with support in Italy. We would like to acknowledge the support of
management at Hewlett-Packard Laboratories, especially John Wilkes, Dick
Lampman, Bob Ritchie, and Frank Carrubba in Palo Alto, and Peter Porzer in Pisa.
We would like to thank Bart Sears for his help with various systems, and John
Wilkes for the use of his data base for managing references. We have also received
support from Consiglio Nazionale delle Ricerche:

CARLO GHEZZI
Milan, Italy

MEHDI JAZAYERI
Palo Alto, California

DINO MANDRIOLI
Pisa, Italy

Contents

Preface to the Second Edition xiii
The Role of Object Orientation xiv
The Purpose of Case Studies xiv
Instructor Resources XV
Preface to the First Edition xvii
Audience xviii
Prerequisites xviii
Organization and Content xviii
Exercises) Xix
Case Studies " Xix
Laboratory Course xix
Reading Graph X
Acknowledgments X
Chapter 1 Software Engineering: A Preview 1
11 The Role of Software Engineering in System Design 2
1.2 A Shortened History of Software Engineering 3
1.3 The Role of The Software Engineer 5
1.4 The Software Life Cycle 6

1.5 The Relationship of Software Engineering to Other Areas
of Computer Science 8
1.5.1 Programming Languages 9
1.52 Operating Systems 10
1.5.3 ~ Data Bases 10
1.5.4 Aurtificial Intelligence i1
1.5.5 Theoretical Models 12
1.6 The Relationship of Software Engineering to Other Disciplines 12
1.6.1 Management Science 13
1.6.2 Systems Engineering 13
1.7 Concluding Remarks ' 13
Bibliographic Notes 14

vi Contents

Chapter 2 Software: Its Nature and Qualities

2.1 Classification of Software Qualities
2.1.1 External Versus Internal Qualities
2.1.2 Product and Process Qualities

22 Representative Qualities
221 Correctness, Reliability, and Robustness
222 Performance
223 Usability
224 Verifiability
2.2.5 Maintainability
2.2.6 Reusability
22.7 Portability
2.2.8 Understandability
229 Interoperability
2210 Productivity
22.11 Timeliness
2.2.12 Visibility

2.3 Quality Requirements in Different Application Areas
23.1 Information Systems
23.2 Real-Time Systems
233 Distributed Systems
234 Embedded Systems

24 Measurement of Quality

25 Concluding Remarks
Further Exercises
Hints and Sketchy Solutions
Bibliographic Notes

Chapter 3 Software Engineering Principles.

31 Rigor and Formality

3.2 Separation of Concerns

33 Modularity

34 Abstraction

35 Anticipation of Change

36 Generality

37 Incrementality

38 Two Case Studies Illustrating Software Engineering Principles

3.81 Application of Software Engineering Principles to Compiler
Construction
3.82 A Case Study in System Engineering
39 Concluding Remarks
Further Exercises

15

16
16
16
17
17
20
22
23
23
26
28
28
29
30
30
32
33
33
34
36
36
37
38
38
39
39

41

42
44
47
49
50
52
53

54
59
64
65

Contents vii

Hints and Sketchy Solutions 65
Bibliographic Notes 66
Chapter 4 Design and Software Architecture 67
4.1 The Software Design Activity and its Objectives 70
41.1 Design for Change 72
412 Product Families 76
4.2 Modularization Techniques 78
42.1 The Module Structure and its Representation 79
422 Interface, Implementation, and Information Hiding 86
423 Design Notations 93
42.4 Categories of Modules 100
4.2.5 Some Specific Techniques for Design for Change 108
42.6 Stepwise Refinement 111
427 Top-Down Versus Bottom-Up Design 117
43 Handling Anomalies 118
4.4 A Case Study in Design 121
4.5 Concurrent Software 124
4.5.1 Shared Data 124
452 Real-Time Software 132
453 Distributed Software 134
4.6 Object-Oriented Design 139
4.6.1 Generalization and Specialization 140
462 Associations 143
4.63 Aggregation 145

- 464 More on UML Class Diagrams 146
4.7 Architecture and Components 146
4.7.1 Standard Architectures 147
4.7.2 Software Components 149
4.7.3 Architecture as Framework for Component Integration 152
4.74 Architectures for Distributed Systems 153
48 Concluding Remarks 154
Further Exercises 156

Hints and Sketchy Solutions 158
Bibliographic Notes 159
Chapter 5 Specification ' ' 161
51 The Uses of Specifications 162
5.2 Specification Qualities 165
53 Classification of Specification Styles 167
54 Verification of Specifications 170
55 Operational Specifications 171

551 Data Flow Diagrams: Specifying Functions of Information Systems 171

viii Contents

552 UML Diagrams for Specifying Behaviors
5.5.3 Finite State Machines: Describing Control Flow
5.5.4 Petri Nets: Specifying Asynchronous Systems
5.6 Descriptive Specifications
5.6.1 Entity-Relationship Diagrams
5.6.2 Logic Specifications
5.6.3 Algebraic Specifications
5.7 Building and Using Specifications in Practice
5.7.1 Requirements for Specification Notations
5.7.2 Building Modular Specifications
5.7.3 Specifications for the End User
Concluding Remarks
Further Exercises
Hints and Sketchy Solutions
Bibliographic Notes

Chapter 6 Verification

6.1 Goals and Requirements of Verification
6.1.1 Everything Must Be Verified
6.1.2 The Results of Verification May Not Be Binary
6.1.3 Verification May Be Objective or Subjective
6.1.4 Even Implicit Qualities Must Be Verified
6.2 Approaches to Verification
6.3 Testing
6.3.1 Goals for Testing
6.3.2 Theoretical Foundations of Testing
6.3.3 Empirical Testing Principles
6.3.4 Testing in the Small
6.3.5 Testing in the Large
6.3.6 Separate Concerns in the Testing Activity
6.3.7 Testing Concurrent and Real-Time Systems
6.4 Analysis
6.41 Informal Analysis Techniques
6.4.2 Correctness Proofs
6.5 Symbolic Execution
6.5.1 Basic Concepts of Symbolic Execution
6.5.2 Programs with Arrays
6.53 The Use of Symbolic Execution in Testing
6.6 Model Checking
6.7 Putting it All Together
6.8 Debugging
6.9 Verifying Other Software Properties
6.9.1 Verifying Performance

177
179
185
210
210
213
229
236
236
240
257
258
259
262
266

269

270
271
271
272
273
274
274
275
277
280
282
302
312
313
316
317
320
337
339
342
345
347
349
351
355
356

Contents ix

6.9.2 Verifying Reliability 356
6.9.3 Verifying Subjective Qualities 360
Concluding Remarks n
Further Exercises 372

Hints and Sketchy Solutions 378
Bibliographic Notes 381
Chapter 7 The Software Production Process 385
7.1 What is a Software Process Model? 386
7.2 Why Are Software Process Models Important? 388
7.3 The Main Activities of Software production 391
7.3.1 Feasibility Study 391
73.2 Eliciting, Understanding, and Specifying Requirements 392
7.3.3 Definition of the Software Architecture and Detailed Design 399
73.4 Coding and Module Testing ‘ 399
7.3.5 Integration and System Testing 400
73.6 Delivery, Deployment, and Maintenance 400
7.3.7 Other Activities 401
7.4 An Overview of Software Process Models 403
741 Waterfall Models 403
74.2 Evolutionary Models 410
743 Transformation Model 413
7.4.4 Spiral Model 416
745 An Assessment of Process Models 417
7.5 Dealing with Legacy Software 420
7.6 Case Studies 421
7.6.1 Case Study: A Telephone Switching System 421
7.6.2 Case Study: A Budget Control System 426
7.6.3 Case study: The Microsoft Synchronize and Stabilize Process 430
7.64 Case study: The Open Source Approach 431
7.7 Organizing the Process 433
771 Structured Analysis/Structured Design 434
772 Jackson’s System Development and Structured Programming 439
7.7.3 The Unified Software Development Process 444
7.8 Organizing Artifacts: Configuration Management 447
7.9 Software Standards 451
710 Concluding Remarks 451
Further Exercises 452

Hints and Sketchy Solutions 453
Bibliographic Notes 454
Chapter 8 Management of Software Engineering 457

8.1 Management Functions 459

