3
v

o = e

L O Cpe. g
& S, S0, % ©- g
7,0 A
Q. U, °
O,, (7 . S
7}

I [3 R 9 4K 4 Lz

Software Engineering
An Object-Oriented Perspective

[2] Eric J. Braude

@ EF I 4 & sk A4

b o Publishing House of Electronics Industry
WILEY . anu http://www.phei.com.cn

®ETREAR

11

B3 SRR T2

(F&Hh)

Software Engineering

An Object-Oriented Perspective

[£] EricJ. Braude ¥

R FIK L &AL
Publishing House of Electronics Industry
Jt5 - BEIING

mE/ N

A BE AT RAMTREIT R, WARMIHE T RATREE, g 7 St T
BESITENRE. BB TR REE, TR WIPRRER . BUTHANK . RERE. Bil
AR AA . [, EEEE—MERRESREM, HHRERAEREANT EEEER. &7
BRtHE . SEABERTR CRIMIURIR T 7 AT RO R R R 35 4L

AEFH AR LR FR AR A FRERIFTERE, CITHENRETF & ARSSRAIFRY
FEHR
Eric]. Braude: Software Engineering: An Object-Oriented Perspective.

ISBN 0-471-32208-3

Copyright © 2001, John Wiley & Sons, Inc. All Rights Reserved.)
AUTHORIZED REPRINT OF THE EDITION PUBLISHED BY JOHN WILEY & SONS, INC.,New York, Chichester,
Weinheim, Singapore, Brishane, Toronto. No part of this book may be reproduced in any form without the written permission
of John Wiley & Sons, Inc.

This reprint is for sale in the People’ s Republic of China only and exclude Hong Kong and Macau.
English reprint Copyright © 2003 by John Wiley & Sons, Inc. and Publishing House of Electronics Industry.

A BESCEEIR LT Tl BARFE A John Wiley & Sons B 1E AR, MRAUREREARLEMEEN (R
FREMBRPFHABX) #E. REHREBERBEFT, RELUEM T RE HRPEABEITE

B AGESRFLS: BF: 01-2003-1040
BBERRE (CIP) #iE

T) SR R 14E L2 = Software Engineering: An Object-Oriented Perspective / (3£) 113718 (Braude, E.J.)
E. b5t BT H AR, 20034

(BETEAE)

ISBN 7-50:53-8622-0

./ 0.46. L&EIHR -3 V. TP311.5
PERAESE CIPEIERF (2003) $022574 5

TEHmE. BER

BRI &, JEERGERIT

HREFT: BF L HARAE hitp://www.phei.com.cn
EHEBRE T HERE 1731558 BE4%: 100036

% . SHEesE

FF A 787 x 980 1/16 Eigk. 325 =¥ 78T

B W 20034 AE1R 2003 4E 4 A% 1 IETRY

JE - #r: 49000

R FELF Lk hRAGEE, ASREAE, AOMERE AR, THERE, A5ARLFHBE, B
AdtE: (010) 68279077

PREFACE

This book is not just about software engineering, but also how to do software engineering. Such a book has not
been fully attempted in the past because no technical approach has enjoyed sufficiently broad acceptance. The
object-oriented approach, in particular, has merely been included as a section in software engineering textbooks,
despite the fact that a very large proportion of contemporary projects utilize object-oriented languages.

During the 1990’s, the Object-Oriented Analysis and Design community fashioned an approach to application
design, together with a corresponding notation: the Unified Modeling Language. The broad acceptance of this
approach and language makes the new millennium’s beginning an appropriate time to teach the doing of software
engineering, and not merely talk about software engineering, Thus, although this book necessarily includes as-
pects of software engineering that are not object-oriented, it is designed to support instruction in the application
of frameworks, use cases, and design patterns: It also relates object-orientation to techniques for requirements
analysis and testing. As a result, instructors can spend less time trying to cover numerous approaches, and more
time promoting depth and practice.

Any book showing how to do software engineering must include a case study. In addition, since software
engineering deals largely with complexity, a software engineering textbook needs a substantial case study, rather
than a token one. Finally, the case study should be interesting enough to students so that they can envision
building upon it just for fun. For these reasons, this book shows throughout how software engineering principles
are applied to the construction of a particular role-playing video game. Video games afford a rich opportunity to
demonstrate frameworks, design patterns, state behavior, concurrency, and nontrivial graphical user interfaces.
Scientific and business examples complement the case study.

The typical software product is built by a team of software engineers, rather than by an individual working
alone. To satisfy the corresponding educational need, this book provides extensive support for student teams.
Watts Humphrey’s pioneering work on the Personal Software Process [Hu] and the Team Software Process
Hu7] inspired\ much of this support.

Audience

This book is intended for senior-level undergraduates and first year graduate students. Since the goal of the book
is to produce good practice in developing software, the book will also be useful for practicing professionals who
wish to improve their knowledge and performance. The text assumes familiarity with programming using classes
and objects, preferably in Java.

Organization
L2

Each of Chapters 1, 2, 4, 5, and 6 is divided into two parts. This is designed to help those readers and instructors
who wish to progress rapidly through the fundamentals of requirements analysis and design. They can do this by
first covering Part I of these chapters, returning later for the Part I’s.

» The introduction provides a brief overview of software engineering, together with suggestions for student
teams. This section also provides a summary of the case study so that students can be reassured that technical
challenges do indeed await them beyond the “process” and project management concepts that they must
understand.

* Chapter 1 provides an extensive introduction to software engineering. Section 6, on process, is the heart of
this chapter.

* Chapter 2 is concerned with how software projects are organized. Technical people sometimes try to avoid
this subject, but they will be much happier in their team work if they understand organizational and manage-
ment issues. In particular, Section 1, an introduction, and Section 4 on risk, discuss knowledge which is
indispensable for software engineers.

Chapters 3 through 10 follow the logical order in which software is produced during each iteration.

* Chapters 3 and 4 concern “requirements analysis™: the process of understanding what is to be produced.
* Chapters 5 and 6 indicate how products are designed and how designs are expressed.

* Chapter 7 discusses programming in the context of software engineering.

¢ Chapters 8 and 9 focus on the testing process.

* Chapter 10 discusses the activities required after the product has been released.

* References are found at the end of the Book. Acronyms are summarized on page 475.

Ways to use this book
L

Although the sequence of the book’s chapters is logical, it does not entirely parallel the way in which applications
are actually produced. The requirements analysis / design / program / test sequence is usually repeated at least
once. Chapters 1 and 2 discuss the ways in which this repetition can be organized.

There are several basic ways in which this book can be used, each motivated by different priorities, and these
are discussed next.

The linear way to use this book: Read the chapters in this order: Introduction/1/2/3/4/5/
6/7/8/9/10 The author has taught from this material by reviewing this preface, followed by Chapters 1
through 10 in sequence. He has relied on chapters 1 and 2 for an overview, and encouraged class teams to first g0
through elements of the requirements analysis/design/program/test sequence with a trivial set of requirements.
This accustoms the group to the idea of “process”, exercises group interaction, and exposes the members to the
problems to be faced. It requires little exposure to the substance of the material beyond chapter 2.

The “Two-pass” way to use this book: Read the chapters in this order: Introduction/1 Parti/
2Part]1/3/4Part1/5Parti1/6parti/1Partli/2Partll/4Partll/5Partll/6Partli/7/8/9/10 The
first pass covers the introductory sections of each chapter, and the second pass extends to the entire chapters. This
sequence has the advantage of enabling teams to build a small prototype while reviewing the Part I sections, then
embarking on the full development process afterwards. The author recommends that this prototype be extremely
modest. Its main purpose should be to get the team working together, and to exercise aspects of the software
engineering process. These activities take a long time for new teams. Useful features should not be expected.

The “career ladder” way to use this book: Read the chapters In this order:introduction/1/7/
8/6/5/2/3/4/9/10 After introducing software engineering using Chapter 1, other instructors may prefer

-2

to order the topics according to the typical career of a software engineer within a company. Careers start with the
role of programmer (this starts with Chapters 7 and 8, using the case study design of Chapter 6 as the basis for an
example). Programmers are eventually given the responsibility of a designer (Chapter 6, using the case study
architecture in Chapter 4). Designers typically transition into the role of architect (Chapter 5 using the require-
ments in the case study of Chapter 6). The final career level for which this book is relevant is project leader

(Chapters 2, 3, 4, 9 and 10).

The website for this book

Among the features of the book’s web site at http://www.wiley.com/college/braude, are the following.

* Slides of all the figures and bullet sets in the book, in color, and in original PowerPoint form. This allows
instructors to modify and customize the slides, and to selectively integrate them with other slides.

« Answers to exercises for faculty (in a password-protected mode)

* Java source code for the book’s case study

There are many ongoing plans for the website, and the reader is referred there for its list of current features.

Exercises

There are three kinds of exercises in each chapter. “Review” exercises have short answers, and a solution or a
hint to each is provided in the same chapter as the question. “Team” exercises provide specific goals and evalu-
ation criteria for teams performing term projects. Solutions to the third exercise type, “general” exercises, are not
provided in the book, but are available to instructors at the book’s web site.

Acknowledgment

In my career as a software engineer and manager in industry, and in my present practice as a professor and
consultant, I have been struck by how widespread a hunger there is for learning how to do software engineering
“right”, within the relentless pressures of business. I am grateful to my colleagues and students for taking the
time to articulate this need when I have asked them about it.

For assisting me at every step in writing this book, my gratitude to Dick Bostwick is boundless. I am indebted to
Tom van Court for his extensive and painstaking assistance. To my students at the Metropolitan College of Boston
University: thank you all for your feedback. To the reviewers: your comments and reviews have made a significant,
positive difference to this book. The reviewers included the following: Henry A. Etlinger, Rochester Institute of
Technology; Michael Godfrey, University of Waterloo; David A. Gustafson, Kansas State University; Peter
Hitchcock, DalTech, Dalhousie University; Floyd Lecureux, California State University—Sacramento; Steven
P. Reiss, Brown University; and Laurie Werth, The University of Texas at Austin. I want to thank my colleagues
and administrators at Boston University’s Metropolitan College for their interest and encouragement. I am most
grateful to Paul Crockett, Jenny Welter, and Bill Zobrist at John Wiley & Sons, for working so diligently with me on
this project.

Finally, this brief space allows me, however inadequately, to record my deep appreciation to my wife, Judy,

and my son, Michael, for supporting my passion for writing this book.

Eric J. Braude

Boston University

Metropolitan College

Boston, Massachusetts; April 2000

CONTENTS

INTRODUCTION |
1. The Context of SOffware ENGINEETINGo.ooveevivriciiieccirerecireetereecreeene et ese e es et seseeas e etesemese et snesens 1
2. The Activities of Software ENZINEEIINGccccovirieiiiinieiiiieesneceeee st esteesie s s csee e e tseesasensesensn 2
B POCESS ... oneueecireneeirsceceaetesinat e s res b eneas et e saasesarasassesaes et e eabase seessiaeteseeseese st e et sbentesaensesbanresesaetestanteere serenn 4
A PIOJEC ..ottt b e e e SRR bR b e bbb et e e et et areben 5
SUPROPIE e ettt etk et st b stk st et ae et an s bt et nans 6
6. PIOQUCL ...ttt sttt e e et st s s e s e e e e e sresee et easaes s amaensenseeraereteernesheans 6
T QUALLLY .ottt ettt et s e e b e et a et e st a e s b b et e eR et e e et e be e saeabenensetbae et e aseneaenrenssenentasenrreies 7
8. SHUAEHE TRAM PIOJECE.....coviveeieiieeieii i cieerietiee et et eveeee s s seseassessatent et e st ensa sbeensasssesessssrnsassensansenmtnese 8
9. CaSe STUAY OVEIVIEW ...ocerurureeriririciiriinetsie e reteese e et tesesesssaass s s besesesss s et seseassaassatonsasasasatasensssnnns 10
EXEICISES ...covuviieriiicsnieere ettt et e e st s st e e s s e emesa st st s a e e e st bbbt b bt e st an et bem st satne 14
Chapter 1 PROCESS 17
PART L: ESSENTIALS ...ttt e st ssansensssseas st s sas s e s e st st s s sbat s b s s e st ebsesasens 7
1. Introduction to the Software eNGINEEring PIOCESScc.c.cvreeecirrererrnrereseereseseresseesssseresseseseesessssssnssarens 17
2. Historical and Contemporary Perspectives on Software Engineeringccocoeeeiernecovrercerneersrnnennns 19
3. Expectations for Process, Project, Product, and PEoplec.occeemnceececenie et ceeneeeeseeceteenan 22
4. Process Alternatives
5. DOCUIMENTALON ..oouiiminiresicsissiiiriseisisreisossssissonesssasoseesssrssesstsstssssssssstarestssinaasssbsnssstessenssbrnssnntesesssssessssenses
PART II: AT LENGTHccoocvnviiremnisinenesisannans
6, QUALIEY ..ot crrerce e e rreesresrretssaeesssrassessrassass sosaennssessmerntantoress e snssss sussrtessnssessessasenssassstensennanes

9. SUDINATY ..ottt s s s s bt s ba s b s a s on b s bbb sete b osas
EXEICISES ..ovvirriviiiriviemsirnsiiiosirassotse b eaeasssseseesstsieses st seneasstsnasatssssasstsesenssessesens serassasenssssrnteossneressssenssensaras
Case Study 1: Software Configuration Management Plancccccvniireennicnnivecinnne e 59
Case Study 2: Software Quality Assurance Plan Part 1 of 2ccoeeeerievinenieiceninreneerceseeese e 65
Chapter 2 PROJECT MANAGEMENT 71
PART L ESSENTIALScooiricveciionestesninessiseees st reessssn osstsrassssssessssrasessesesessassessasssssensosasassassssiasasasses 72
1. Introduction to Project Managementccoviiririeiiiivcniciiissiniiecntsecsessesnsiensstonssaossasnsssesssresesssansrns 72
2. Managing Project PEOPIec.ccveureremienrennnererenisseseesesesasi st sressssssssessssesssssesssmssssesssssassnsanssssssens 75

3. Options for Organizing PErSOMNELcocviiieceiiiiciriciee ettt eeea et sttt e 78

4. Identifying and Retiting RiSKS ..ot 82
5. Choosing Development Tools and SUPPOTt ..ot 87
6. Creating Schedules: High Level PIanningccoooooeeioiiniieenieeiiieeniesie st eeen et e e e 89
PART IL: AT LENGTH ..ottt sttt ettt ettt eae et st me e eeeae et eas e ensnen 91
7. Integrating Legacy APPICALIONScccuiiuiirmrirerini et etsee et e sebeseme st et b eteecesare e sasesasessnsansarenesen 91
8. Estimating Costs: Barly CalCulationsc.ccoiiieiiiiiin et ere e et e 93
9. Estimating Effort and Duration from Lines of Codecociveernieniniieininiecssiiieeecieeve e 100
10. The Team SOFtWAIE PIOCESSc.ooieuiieiiieiririnieirii et et stesaesasaaen e s esss s sas et bessenssenssmesensseesesanena 102
11. The Software Project Management PIanccocoiiiiiiiici et 103
12. Quality in Project MANAZEMENTc.oovotuiiiirerire it et teresenssessecaset s ess s e e seansmasrses sss e eeeseene 105
13. Process Improvement and the Capability Maturity Modelc.ooviiiiiirioiiiinecneiie s 109
14. Miscellaneous Tools and Techniques for Project Managementcouvviivviiireiieeieeseresnesseeseseseeseens 111
15. Summary of the Project Management PTOCESScccvoeeerioreenreieiree e cveceeecve st e essaes e sseesseen 113
Student Project Guide: Project Management Plan for the Encounter Case Studyccco.covevvoveremnnnn... 114
EXETCISES ...ttt sttt sttt b e bttt m st st et st ees e ettt st en st s e ar e st et eeeene s eaeos 116
Case Study 1: SPMP for the Encounter VIdeo GAMEo.oocuereveereenivieiie s et 118
Case Study 2: Software Quality Assurance Plan Part 2 0f 2c.ccovoiivioeeeiviecceeeee ettt 128
Chapter 3 REQUIREMENTS ANALYSIS I 133
1. Introduction to Requirements ANALYSISccrueirerciemiieiricereesinenireesse st sse e ess s et sese e 133
2. CuStOmET INTETACIONcoovveveie ottt e ae s et st st os et e eeeaeneee e seseee e s e essesnenesseen 138
3. Describing Customer (C-)REQUITEMEILSc.oerrveerieeririeieeieeeeeceetesaeetsesreosse e eeseseseeseresenseeseeesens 141
4. Methodologies, Tools, and Web Use for C-REQUITEIMENEScoiveviveeeeieeree oo reeeeeesssesseeseeenesens 155
5. Rapid Prototyping, Feasibility Studies, and Proofs of CONCeptocvvevveevieievrensesieereeereeessnes 156
6. Updating the Project to Reflect C-Requirements ANALYSISooooveeeremierioeeeeveeeeeesen e eeaeesaen 159
7. Future Directions and Summary of C-REQUITEINENSccvvveveerivereirieirerevceececienseseseeescs e ssensesseseneenes 161
Student Project Guide: C-Requirements for the Encounter Case StUAYcc.ocecemviveveeerevseeireesvensircenns 162
EXEICISES c.uvomvvnivi ittt ctcms bt es s st es e e st ras s e e st eb et n et ee e 167
Case Study: Software Requirements Specification (SRS) for the Encounter Video Game, Part 1 of 2 168

Chapter 4 REQUIREMENTS ANALYSIS II: COMPLETING THE SRS WITH SPECIFIC

D-REQUIREMENTS 175

PART L ESSENTIALS ..ottt ctsasssssstetas et sessss e mes s sas st ste st sasmsssesssenenereenenssesssnes 176
1. Introduction to Specific (0r D-)} REQUITEIMENLSccovieieeriiriiierereeseeereeeeeeseseesseessressensssenessereeseses 176

2. TYpes Of D-REQUITEIMENEScvuevevitnreierieretiseeeetsteeeisesensense et rs s sessssesseessseseressesesesssssesssesassssesessesssees 177

3. Desired Properties of D-REQUITEIMENLSooveceerrerrienniiriieinseresessmiseesesessseesesssssssesorasesoressesesesseees 180

4. SeqUENCE DIAIAINScoiviriiiiiieiiiae et sttt ra e bbbt bes et ees e ses e nasseemseeessensen e 150
5. Organizing D-ReGUITEINENLScccuvermimmiisireeiretssensarensssssrss s ssessssssassosessaesiesssesssessssessessnssssssassassasees 192

PART HI: AT LENGTH ..ottt scteticse et ettt s s et st s s e st st en e s st sen st 203

6. Quality of Specific REQUITEMENLSoccoooveviuiieieereeeeictnee ettt et ess st ses s et sessbe e s essasasassnans 203
7. Using Tools and the Web for Requirements ANAlYSiscccuurrnerercnmnisereeeeteeeerens st vseessesessessenios 208
8. Formal Methods for Requirements SPeCIfiCationcvveivrereecccreieneeiseceerenisceseeseeseeeeseeseesesseenee 209
9. The Effects on Projects of the D-Requirements Processoccvevevneniiiecnici e 215
10. Summary of the D-Requirements PIOCESSccccooeviiccnenrncrerinrit e sns s eress s s e esses e ssessasns 216
Student Project Guide: D-requirements for the Encounter Case Studycccvevvevivviicicvecevninneeeneenen. 217
EXEICISESoovvvii ottt ettt sttt e s et sae et e et st ene b e st e s st ets e et et s e e e e at et et ten e e ntenn 219

Case Study: Software Requirements Specification (SRS) for the Encounter Video Game, Part 2 of 2 ... 221

Chapter 5 SOFTWARE ARCHITECTURE 237
PART I: ESSENTIALScoooiiitiririirttrt ettt scs e tes et e stesaseseesesesaem s sreess s e ettt een e 238
1. Introduction to System Engineering and SOftware ATCHtECtUTEoovvvervveeeeereereeeemeeeeeeeeeeoe 238
PART IL: AT LENGTHoiiiiiiimiiieiresemnie st sttt s eesese et sessasassstssesss e ss e ee s 243
2. Models, Frameworks, and Design PAtlEINSoceeuiuivrieveeserieeisieeessseserseesseesess e oo se s e 243
3. Software Architecture Alternatives and Their Class MOGEISeveeerevereeeveesoseeeemeeoeooooooo 251

4. Architecture Notation, Standards, And TOOISccvreevreeecereeesesrseessesssssssssssssssssessssssssse e s ssseo.. 268
5. Architecture Selection QAcccooerenrncrenieieisieeete s secseeeseras e essse e s e sttt sse e 269
6. Summaryccoceveerenernnannn, bttt e e b s bt shi eaeta et e ae e e e ta ahe ke sbenreateases e anenerees 276
Student Project Guide: Architecture of Encounter Case Styo..ovooeeeeeoeeeeeroeemeeermeeoseoon 276
EXETCISES ...ooevi e cetemcesneeae oot st s as st et ettt s ase s sae et e s st s et e e e et tsone e e ee e eeeen 279
€8S STUAY ..ottt e e est s s n s e e b ee e se et et s eee s s e et ees e e eeesee s eoees e 280

L. Role-Playing Game Architecture FrAMeWOTKcouovuvviieivenseeeieseeeeeseeeeee e eeeeesveeresseenns 281

II. Architecture of Encounter Role-Playing Game Part 1 of 2 of the Software Design Document....... 283

Chapter 6 DETAILED DESIGN 289
PART L: ESSENTIALS ...t sansenistesssssaes st sansssesesssseasss s s s oo ees s esos s eneee 290
1. Introduction to Detailed DESIZNcoveeeverreemeiineecieeeesesteeseceeieeee et eeeeeeeeseesessesserees s 290

2. Sequence and Data Flow Diagrams for Detailed DeSignooveueemeeeeeeerereerrersereesreeeeeeoooeoeooeeoo. 296
3. Specifying Classes and FUNCHONScouveeeerreerieseesnesiesimessseesesesssessssesaseesssssessessesessssosseeseesees oo 298
4. Specifying AIZOTIIINScivuiieeiecrerirecenireeet et et st st et e seseseseseesesasse et reemesses e e 300
PART II: AT LENGTHcooniiere et tes s ctsseeseaesaetaes e s s stas s sas s s e e e e 304
5. Design Patterns II: Techniques of Detailed DESIZIoeeeeveereeeeerrrecererecesseeeeeseeseess oo 304
6. The Standard Template Library Sererte et s et e e s st s et st s e s e en e tesat ses sesnerannas 316
7. Standards, Notation and Tools for Detailed DESIZNcreemeeeeeeeeereeeeeeeeseeseeeree oo 316
8. Effects of Detailed DeSigns 0n PIOJECLScevruruuniirersssessssssssassososesorsossesseesessesssssssssses s ssssoe s eeneenn, 320
9. Quality in Detailed DESIZNScccocerrermrneccmmniirisisessssssesssessssssnssssssssssessssessssmems e seeeessssseseeesn s 322
LO. SUIINATY ..ottt st sbess b sss s sanses s ssee s ses e s baeen e 326
BIXEICISLS oottt ettt et sttt ts et s ettt et et e se et e eses e s 326

CASE STUAQY .vncvverrrrrrasesienerene st st eesreaenesestessonseseemesasess sesesesesbssseenesesesinssmsassensss sessbesasbebsssseanens st st seesrrssssens 328
I. Detailed Design of Role-Playing Game Framework, Continued (Remaining Parts of the Software

DeSIGN DOCUIMENL)c.ecueiii it stretete ettt ettt ses e b e st ettt sae sha s et esetnt s e nesaes et eneeeasesen 328

II. Detailed Design of Encounter, Continued (Remaining Parts of the Software Design Document) 330
Chapter 7 UNIT IMPLEMENTATION 339
1. Introduction t0 IMPIEMENLALIONcoerimriiiece s b et se e st sae s e et es e 340
2. Programming and StYIE ...ttt it e e e et se st s st s 344
3. Programming STARAAIASouiiiiiiiiccrciiiiicreerirc et sen s et st s s sttt me e es s sttt s s nns 350
4. Provably COrrect PROZIAINSccooviieieriieeeventisereiitese et ress e r et s sesserbersnesosesesesssnseseseenenesseenens 354
5. Tools and Environments for PrOSraAMmMINgGcocevueiiiiiirnenieereisies e ieeeevemsvesenies e ses s st 357
6. Quality in IMPIEMENTAtIONccoeirmieieiiieieiet ettt ste et r e st semesat st st ss e saseeeeeees et resans 358
7. Summary of the Implementation PrOCESSo.ecivieee ittt 364
EXEICISES v iviiinnieiniiecsiii ittt st et ase ettt se s s et st e e s e st bene bt sen st sea e neneenenens 364
CASE STUAY ...ttt e etetna e s es st et erasa b s s s e sase s bbbt srsessms b et sanre e st enaeses st enenerarasens 365
L Updates t0 the SOAPc.coiieerirtresttnesessieanesssstssassssseessms st sessseseasseaeseesasssasssastssssssnsans 365
II. Updates to the SCMP Appendix: Implementation Modelcccovvoiiereieeve e 366
II1. Personal Software Documentation, Part 1 0f 2cccccercencrrrenininccrinsisiennecnsieiies et es e sseseeee 366
IV. Source Code (Without Test Code): EncounterCharacterooveeneeernssieeercenessnnssorererncssssesenns 367
Chapter 8 UNIT TESTING 375
L. Introduction t0 Uit TESNEcvveiiiiiireirciiitcnicieeereeenec et ss e sts st st ssasesssesesssesssesssessresenssessnsees 376
2L TESETYPES cuvvevririniisianitiniriiresimtsie st sttt bbbt ses b sbasns s e sane e s sesasssnsenen et ase s sn e asasernneesanene 379
3. Planning Unit TESS ..civiriisicinimiienniriiniiciietinsitiesesst st sssesnsss s resssasssssesssssssrststerssos stonssessananssssne 386
4. Checklists and Examples for Method TESHNEcccvirveererireneresniseresienenssessssssnscssssssssassssesessesasassssenee 388
5. Checklists and Examples for Class TESHNEc.cvvivriiiveeniiviseeiennceenassnresesnismiasssssrsmsssssmssssensassessesnes 397
6. SUIMINATY ...ttt r sttt st seas s eseses s et s e dsasaeeesa s nteassassnssssessasabestasensenssmnrasssrroras 400
EREICISES ...oovevrrctitnien ettt st ettt et ettt sa s e st b e s be st s et seere s ennaenersete e 401
Case Study: EncounterCharacter. java Personal Software Documentation (PSD), Part 2 of 2 403

Chapter 9 SYSTEM INTEGRATION, VERIFICATION, AND VALIDATION ...ccoccoessnseesensasesares 413

1. INETOAUCHON «..ecneinieiiticcneetiteaec e et rest s e sse e stsnssssrese et asesssassesbasssssastssnstoneseessstnsenssateneasnesaestassnes 414
2. The INtEZration PTOCESSccceevee ettt en st ssstansensts onsessassesssnssnsasssassanessrasenres 418
3. The TESUNZ PIOCESS ...vucuvieimiiiit e cesies e sssisestassscesssssisssststnsessteesssssssassensbanesesssassssnsessane 423
4. Documenting Integration and TEstSccuvrreerericecersrniecesreasnsssesessassssssssinsesssenessessesssssssasssssesonne 431
5. The Transition IEFAtONSco.ccceritieicireererernietirereensretessteseassssssssnssosssesosssessorsensasensnetonessssensssnsnen 434
6. Quality in Integration, Verification, and Validationcceceeeveeverreeiniecinsierenressessessessesssessasessssssans 436
7. Tools for Integration and SYSIEM TESLNGcccurieetriererrererenresieesieresserisesessessesessessasnsseesessoseosssesesessesen 439
8. SUIMIMATY ...ttt st bs st s e st s et e st st s en s e s b sarabseseassoseansseeansnanssemtan 442
EREICISES vttt ettt e et sa seo st et anane b e b e assue b b ereramssanansenee et et et st eaeanan 442

ASE STUAY: ... oeerrecaecctriet et sas st e s st sbe st et ot are s e s e aeestae she et et ea e st aa st pe e s e r gt er e s ebaseren 444
[. SCMP: Appendix A. Plan for Integration Baselinesc.ccccciecvviiiiiiiniiennicn e e
I1. Software Test Documentation fOr ERCOUNTETcvvvviiieeice et eeree et resreesnees s snasssaasssaeen

Chapter 10 MAINTENANCE

1. Introductioncoccoveevveevrvricnneicnen.
2. Types of Software Maintenance
3. Maintenance Techniques
4. IEEE Standard 1219-1992..................
5. The Management of Maintenance
6. Qualities in Maintenance....................

ACRONYMS

..

GLOSSARY

REFERENCES

CREDITS

458
459
462
464
468
474
477
481
481
483

490

493

498

504

v s

TN

INTRODUCTION

“. .. enterprises of great pith and moment . . .”
— Hamlet

This introduction describes what Software Engineering is, and how this book is organized.

The creation of large software applications is one of the most important engineering challenges of modern
times.

* Sections 1 through 9
* Exercises

1. The Context of Software Engineering

Software engineering is by definition a kind of engineering, and it therefore has the same set of social responsi-
bilities as all of the other kinds of engineering.

During the history of computing, much of the work of software people has been regarded as “development,”
that uses programming language skills but little engineering discipline. The Accreditation Board for Engineering
and Technology defines engineering as shown in Figure 1. Much thought had been given to engineering as a
human endeavor long before the birth of software. As of the early 2000s, software engineering is beginning to
command the same degree of discipline from its practitioners as other branches of engineering such as electrical,
mechanical, and civil. The nature of that discipline is the theme of this book.

How is software engineering different from, and how is it the same as, other kinds of engineering? One prop-
erty that software engineering shares with the others is the necessity for a thorough description of what is to be

2 Software Engineering: An Object-Oriented Perspective

produced, a process called “requirements analysis.” On the other hand, software projects are subject to particu-
larly frequent changes, including those imposed while the product is under development.

The professionin which

a knowledge of the mathernatical and

naltural sciences gained by study, experience, and practice
is applied with judgment

to develop ways o utifize, economically, the

materials and forces of nature for the benefit of

mankind

—Accreditation Board for Engineering and Technology, 1996

Figure I A Definition of “Engineering”

Two trends dominated software engineering in the 1980s and 1990s. One was the explosive growth of applications,
including those associated with the Web. The other trend was a flowering of new tools and paradigms (ways of
thinking, such as object-orientation).

Despite the advent of new trends, however, the basic activities required for the construction of software have
remained stable. These activities include those listed in Figure 2 and Figure 3.

® definingthe software development
processto be used
* Chapter 1
® managing the development project
* introduced in Chapter 2; aiso referenced
in the remaining chapters
® describingthe intended
software proguct
* Chapters 3 and 4
® aes/gning the proauct
* Chapters 5 and 6

Figure 2 Basic Activities of Software Engineering, 1 of 2

Development teams vary both the sequence and the frequency of these activities, as explained in Chapter 2.
Software development in the real world is usually driven by a demanding list of features, as well as tight, market-
driven deadlines. As a result, only well-organized groups of engineers, educated in the methods of software
engineering, are capable of carrying out these activities appropriately. The alternative is often chaos, and some-
times disaster.

Software engineering involves people, process, project, and product, as suggested by Figure 4. The symbols
used are from the Unified Software Development Process (USDP) of Jacobson, Booch, and Rumbaugh [Jal],

AN

Introduction 3

one of the processes for software development explained in this book. The icon shown in the “process” part of
Figure 4 is explained in Chapter 1. The “project” diagram shows engineers doing various kinds of work, accord-
ing to their role, and then passing the results to other engineers who then perform their roles. The “products” of
a software development effort consist of much more than the object code and the source code. For example, they
also include documentation, test results, and productivity measurements. In conformance with the USDP, we
will call these products artifacts. This book describes what a complete set of artifacts contains.

® /mplementingthe product
i.e. programming it
* Chapter 7
® festingthe parts of the product
¢ Chapter 8
© /infegraling the parts and testing
them as a whole
* Chapter 9
® /maintaining the product
¢ Chapter 10

Figure 3 Basic Activities of Software Engineering, 2 of 2

People

(by whom it is done}

ncapton| Bsboration | Congruction | Traneron
* ;"l_l"'“ EEl EE
CAEIER =

leawm
A ot el
- L/rm Ctolill

[yp—
Anaiysis
Deslon e
-
Tont

Process

(the manner
in which it is done)

Project

(the doing of it)

Product

(the application artifacis)

* Symbology from [Ja1]; explained in Chapter 1

Figure 4 The Four “P”’s of Software Engineering

4 Software Engineering: An Object-Oriented Perspective

3. Process

This section is summarized in Figure 5. The “waterfall” process begins with the specification of the requircments
for the application, then proceeds to the design phase, then the implementation phase and, finally, the testing
phase. The maintenance phase, described in Chapter 10, is sometimes included in the waterfall process. In this
book, we have divided “design” into “architecture” (Chapter 5) and “detailed design” (Chapter 6), and “testing”
into “unit testing” (the parts: Chapter 8), and system testing (the whole: Chapter 9). Software development rarely
occurs in the strict “waterfall” sequence. Web development, for example, tends to skip back and forth among
specification, design, integration, and testing. In practice, then, we often use iterative processes for software
development, in which the waterfall is repeated several times in whole or in part. This is explained in Chapter 1.
When performed in a disciplined manner, iterative styles can be highly beneficial.

Process Set of activities carried out
(Chapters 1 and 2) to produce an application
Development sequences: — [—
Waterfall G el s
Iterative ¥ — ..,W[:
| areen |
Process frameworks: ——

Personal Software Process™

Team Software Process™

Capability Maturity ModelS™
—for organizations

r!{li{l

Standards:

Institute of Electrical and Electronic Engineers
International Standards Organization

Figure 5 “Process” (graphics reproduced with permission from Corel)

Decisions about software process often take place at an organizational level (company, department, group,
etc.) and so it becomes important to measure the software development capabilities of organizations. Several
chapters discuss such a measure, the Capability Maturity Model*™™ (CMM). The CMM was developed by Watts
Humphrey and the Software Engineering Institute (SEI). The SEI is described in Chapter 1.

The software engineering capability of individual engineers can be developed and measured by the Personal
Software Process™ (PSP) created by Humphrey [Hu]. The highlights of CMM and PSP are woven through
several chapters of this book. A third level of software organization is Humphrey’s Team Software Process™
(TSP) [Hu7] which describes the process by which teams of software engineers get their work done. The author
believes that disciplined frameworks such as the CMM, PSP, and TSP will form a basis for the professional
software engineer in the twenty-first century.

introduction 5

‘Well thought out documentation standards make it much easier to produce useful, reliable artifacts. Several
standards are available. For the most part, this book applies the IEEE (Institute of Electrical, and Electronics
Engineers) software engineering standards, many of which are also sanctioned by ANSI (American National
Standards Institute). Many companies provide in-house standards. Although standards have to be modified over
time to reflect new issues, the core of good standards has remained stable for a number of years. Unless they work
from standards and, if possible, case studies applying them, teams typically waste a great deal of time dreaming
up the structure (as opposed to the substance) of documents. Standards focus the process by providing a baseline
for engineer, instructor, and students. In practice, they are modified and tailored to specific projects.

4. Project

A project is the set of activities needed to produce the required artifacts. It includes contact with the customer,
writing the documentation, developing the design, writing the code, and testing the product. Selected aspects of
projects are summarized in Figure 6.

people flow of work

v/
Set of activities carried out f] L id Z
to produce an application

« Object Orientation: very useful paradigm
- Unified Modeling Language: design notation

+ Legacy system: common starting point
- enhancement or usage of existing system
Figure 6 “Project”

The object-oriented paradigm (way of thinking) can be very useful for project development. It is particularly
helpful in facilitating continual change because it can be used to organize designs and code in parts (classes and
packages) that match the real-world problem.

The Unified Modeling Language (UML.: see [Ra]) is an industry standard for describing designs, and is used
throughout this book. Note that the UML is not a methodology in itself, but a notation. The UML is summarized
on the book’s inside covers.

Chapter 5 explores the ways in which the architecture of an application can be developed. The approach
borrows from the exciting field of Design Patterns, and from research classifying software architecture. Chapter
6 completes the discussion of designs, demonstrating how complete details can be specified. Chapters 7 through
9 cover the integration and test of the application. Chapter 10 discusses maintenance, the last— and ongoing—
process phase.

The overwhelming proportion of real world development work is not the building of brand new systems at all,
but the enhancement or usage of existing (“legacy”) systems. Even applications which are apparently new, usu-

