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Preface

This textbook is intended for use in a first course in mechanics of materials.
Programs of instruction relating to the mechanical sciences, such as me-
chanical, civil, and aerospace engineering, often require that students take
this course in the second or third year of studies. Because of the fundamental
nature of the subject matter, mechanics of materials is often a required
course, or an acceptable technical elective in many other curricula. Students
must have completed courses in statics of rigid bodies and mathematics
through integral calculus as prerequisites to the study of mechanics of
materials.

To place this book in context for engineering education, the user should
know that it is an extensive revision of the fourth edition of Strength of
Materials by Pytel and Singer. The contents have been thoroughly modern-
ized to reflect the realities and trends in contemporary engineering educa-
tion. In addition to eliminating a few of the specialized topics normally
taught in more advanced civil engineering courses, the coverage of funda-
mental topics has been expanded. All of the illustrations have been redrawn
and improved, with the addition of a second color for clarity and as an aid
to understanding complex structures. Many new diagrams aid the visualiza-
tion of concepts and improve the comprehension of derivations. Fully 60%
of the homework problems are new or modified versions of previous prob-
lems. A new feature is the computer problems found at the end of each
chapter.

Every effort has been made to maintain the conciseness and organiza-
tion that were the hallmarks of the earlier editions of Pytel and Singer. In the
first eight chapters, emphasis is placed exclusively on elastic analysis through
the presentation of stress, strain, torsion, bending, and combined loading.
An instructor can easily teach these topics within the time constraints of a
two- or three-credit course. The remaining five chapters of the text cover
material that can be omitted from an introductory course. Because these
more advanced topics are not interwoven in the early chapters on the basic
theory, the core material can efficiently be taught without skipping over
topics within chapters. Once the instructor has covered the material on elas-
tic analysis, he or she can freely choose topics from the more advanced later
chapters, as time permits. Organizing the material in this manner has created
a significant savings in the number of pages without sacrificing topics that
are usually found in an introductory text.

ix



Features The most notable features of the organization of this text include
the following:

» Chapter | introduces the concept of stress (including stresses acting on
inclined planes). However, the general stress transformation equations
and Mohr’s circle are deferred until Chapter 8. Engineering instructors
often hold off teaching the concept of state of stress at a point due to
combined loading until students have gained sufficient experience ana-
lyzing axial, torsional, and bending loads. However, if instructors wish
to teach the general transformation equations and Mohr’s circle at the
beginning of the course, they may go to the freestanding discussion in
Chapter 8 and use it whenever they see fit.

* Advanced beam topics, such as composite and curved beams, unsym-

metrical bending, and shear center appear in chapters that are distinct

from the basic beam theory. This makes it convenient for instructors to
choose only those topics that they wish to present in their course.

Chapter 12, entitled ““Special Topics,” consolidates topics that are im-

portant but not essential to an introductory course, including energy

methods, theories of failure, stress concentrations, and fatigue. Some,
but not all, of this material is commonly covered in a three-credit
course at the discretion of the instructor.

» Chapter 13, the final chapter of the text, discusses the fundamentals of
inelastic analysis. Positioning this topic at the end of the book enables
the instructor to present an efficient and coordinated treatment of
elastoplastic deformation, residual stress, and limit analysis after stu-
dents have learned the basics of elastic analysis.

The text contains an equal number of problems using SI and U.S.
Customary units. Homework problems strive to present a balance between
directly relevant engineering-type problems and ‘“‘teaching” problems that
illustrate the principles in a straightforward manner. An outline of the ap-
plicable problem-solving procedure is included in the text to help students
make the sometimes difficult transition from theory to problem analysis.
Throughout the text and the sample problems, free-body diagrams are used
to identify the unknown quantities and to recognize the number of indepen-
dent equations. The three basic concepts of mechanics—equilibrium, com-
patibility, and constitutive equations—are continually reinforced in- stati-
cally indeterminate problems. The problems are arranged in the following
manner:

* Virtually every article in the text is followed by sample problems and
homework problems that illustrate the principles and the problem-
solving procedure introduced in the article.

* Every chapter contains review problems, with the exception of op-

tional topics. In this way, the review problems test the students’ com-

prehension of the material presented in the entire chapter, since it is
not always obvious which of the principles presented in the chapter
apply to the problem at hand.

Most chapters conclude with computer problems, the majority of

which are design oriented. Students should solve these problems using

a high-level language, such as MathCad® or MATLAB®, which mini-

mizes the programming effort and permits them to concentrate on the

organization and presentation of the solution.
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Stress

1.1 Introduction

The three fundamental areas of engineering mechanics are statics, dynamics,
and mechanics of materials. Statics and dynamics are devoted primarily to
the study of the external effects upon rigid bodies—that is, bodies for which
the change in shape (deformation) can be neglected. In contrast, mechanics
of materials deals with the internal effects and deformations that are caused
by the applied loads. Both considerations are of paramount importance in
design. A machine part or structure must be strong enough to carry the ap-
plied load without breaking and, at the same time, the deformations must
not be excessive.

Truss of a highway bridge. The members
of a truss carry loading by direct tension
or compression; there is very little bending.
A truss is an efficient structure in the sense
that it has a high load/structural weight
ratio.
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FIG. 1.2 External forces acting on
a body.

FIG. 1.3(a) Free-body diagram
for determining the internal force
system acting on section (7).

(b)

FIG. 1.3(b) Resolving the internal
force R into the axial force P and the
shear force V.

F

(c)

FIG. 1.3(c) Resolving the internal
couple C® into the torque 7 and the
bending moment M.

0 2_2:%

FIG. 1.1 Equilibrium analysis will determine the force P, but not the strength or
the rigidity of the bar.

The differences between rigid-body mechanics and mechanics of mate-
rials can be appreciated if we consider the bar shown in Fig. 1.1. The force P
required to support the load W in the position shown can be found easily
from equilibrium analysis. After we draw the free-body diagram of the bar,
summing moments about the pin at O determines the value of P. In this so-
lution, we assume that the bar is both rigid (the deformation of the bar is
neglected) and strong enough to support the load W. In mechanics of mate-
rials, the statics solution is extended to include an analysis of the forces act-
ing inside the bar to be certain that the bar will neither break nor deform
excessively.

1.2 Analysis of Internal Forces; Stress

The equilibrium analysis of a rigid body is concerned primarily with the
calculation of external reactions (forces that act external to a body) and in-
ternal reactions (forces that act at internal connections). In mechanics of
materials, we must extend this analysis to determine internal forces—that is,
forces that act on cross sections that are internal to the body itself. In addi-
tion, we must investigate the manner in which these internal forces are dis-
tributed within the body. Only after these computations have been made can
the design engineer select the proper dimensions for a member and select the
material from which the member should be fabricated.

If the external forces that hold a body in equilibrium are known, we
can compute the internal forces by straightforward equilibrium analysis. For
example, consider the bar in Fig. 1.2 that is loaded by the external forces F;,
F», F3, and F4. To determine the internal force system acting on the cross
section labeled (1), we must first isolate the segments of the bar lying on
either side of section (1). The free-body diagram of the segment to the left of
section (1) is shown in Fig. 1.3(a). In addition to the external forces F,, F»,
and Fs, this free-body diagram shows the resultant force-couple system of
the internal forces that are distributed over the cross section: the resultant
force R, acting at the centroid C of the cross section, and C*®, the resultant
couple’ (we use double-headed arrows to represent couple-vectors). If the
external forces are known, the equilibrium equations £F = 0 and SM¢ = 0
can be used to compute R and CX.

It is conventional to represent both R and C® in terms of two compo-
nents: one perpendicular to the cross section and the other lying in the cross
section, as shown in Figs. 1.3(b) and (c). These components are given the

! The resultant force R can be located at any point, provided that we introduce the correct re-
sultant couple. The reason for locating R at the centroid of the cross section will be explained
shortly.
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Undeformed Shear

L LT

Twisting Bending

FIG. 1.4 Deformations produced by the components of internal forces and
couples. ‘

following physically meaningful names:

P: The force component that is perpendicular to the cross section, tending
to elongate or shorten the bar, is called the normal force.

V: The force component lying in the plane of the cross section, tending to
shear (slide) one segment of the bar relative to the other segment, is
called the shear force.

T: The component of the resultant couple that tends to twist (rotate) the
bar is called the twisting moment or torque.

M: The component of the resultant couple that tends to bend the bar is
called the bending moment. )

The deformations produced by these internal forces and internal cou-
ples are shown in Fig. 1.4.

Up to this point, we have been concerned only with the resultant of the
internal force system. However, in design, the manner in which the internal
forces are distributed is equally important. This consideration leads us to
introduce the force intensity at a point, called stress, which plays a central
role in the design of load-bearing members.

Figure 1.5(a) shows a small area element A4 of the cross section lo-
cated at the arbitrary point 0. We assume that AR is that part of the resul-
tant force that is transmitted across A4, with its normal and shear compo-
nents being AP and AV, respectively. The stress vector acting on the cross
section at point O is defined as

(1.1)

Its normal component ¢ (lowercase Greek sigma) and shear component 7
(lowercase Greek tau), shown in Fig. 1.5(b), are

P :H;Wl}fﬂ 03 2Bl 8
= 0T (1.2)

!ya:ﬁ;

(b)

FIG. 1.5 Normal and shear
stresses acting on the section at point
O are defined in Eq. (2).
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Area=A

Centroidal
axis

(a) (b)

FIG. 1.6 A bar loaded axially by
(a) uniformly distributed load of
intensity p; and (b) a statically
equivalent centroidal force P = pA.

The dimension of stress is [F/L?]—that is, force divided by area. In SI
units, force is measured in newtons (N) and area in square meters, from
which the unit of stress is newtons per square meter (N/m?) or, equivalently,
pascals (Pa): 1.0 Pa = 1.0 N/m?. Because 1 pascal is a very small quantity in
most engineering applications, stress is usually expressed with the SI prefix M
(read as “mega”), which indicates multiples of 10%: 1.0 MPa = 1.0 x 10° Pa.
In U.S. Customary units, force is measured in pounds and area in square
inches, so that the unit of stress is pounds per square inch (Ib/in.?), frequently
abbreviated as psi. Another unit commonly used is kips per square inch (ksi)
(1.0 ksi = 1000 psi), where “kip” is the abbreviation for kilopound.

The commonly used sign convention for axial forces is to define tensile
forces as positive and compressive forces as negative. This convention is
carried over to normal stresses: Tensile stresses are considered to be positive,
compressive stresses negative. A simple sign convention for shear stresses
does not exist; a convention that depends on a coordinate system will be in-
troduced later in the text. If the stresses are uniformly distributed, they can be
computed from

o== t=- (1.3)

where A is the area of the cross section. If the stress distribution is not uni-
form, then Eqs. (1.3) should be viewed as the average stress acting on the
cross section.

1.3 Axially Loaded Bars

a. (Centroidal (axial) loading

Figure 1.6(a) shows a bar of constant cross-sectional area 4. The ends of the
bar carry uniformly distributed normal loads of intensity p (units: Pa or psi).
We know from statics that when the loading is uniform, its resultant passes
through the centroid of the loaded area. Therefore, the resultant P = pA of
each end load acts along the centroidal axis (the line connecting the cen-
troids of cross sections) of the bar, as shown in Fig. 1.6(b). The loads shown
in Fig. 1.6 are called axial or centroidal loads.

Although the loads in Figs. 1.6(a) and (b) are statically equivalent,
they do not result in the same stress distribution in the bar. In the case of the
uniform loading in Fig. 1.6(a), the internal forces acting on all cross sections
are also uniformly distributed. Therefore, the normal stress acting at any
point on a cross section is

g 1.4
g (1.4)

The stress distribution caused by the concentrated loading in Fig.
1.6(b) is more complicated. Advanced methods of analysis show that on
cross sections close to the ends, the maximum stress is considerably higher
than the average stress P/A4. As we move away from the ends, the stress be-
comes more uniform, reaching the constant value P/4 in a relatively short
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FIG. 1.7 Normal stress distribution in a strip caused by a concentrated load.

distance from the ends. In other words, the stress distribution is approxi-
mately uniform in the bar, except in the regions close to the ends.

As an example of concentrated loading, consider the thin strip of width
b shown in Fig. 1.7(a). The strip is loaded by the centroidal force P. Figures
1.7(b)-(d) show the stress distribution on three different cross sections. Note
that at a distance 2.5b from the loaded end, the maximum stress differs by
only 0.2% from the average stress P/A.

b. Saint Venant’s principle

About 150 years ago the French mathematician Saint Venant studied the
effects of statically equivalent loads on the twisting of bars. His results led to
the following observation, called Saint Venant'’s principle:

The difference between the effects of two different but statically equiva-
lent loads becomes very small at sufficiently large distances from the
load.

The example in Fig. 1.7 is an illustration of Saint Venant’s principle.
The principle also applies to the effects caused by abrupt changes in the
cross section. Consider, as an example, the grooved cylindrical bar of radius
R shown in Fig. 1.8(a). The loading consists of the force P that is uniformly
distributed over the end of the bar. If the groove were not present, the nor-
mal stress acting at all points on a cross section would be P/A. Introduction
of the groove disturbs the uniformity of the stress, but this effect is confined
to the vicinity of the groove, as seen in Figs. 1.8(b) and (c).

Most analysis in mechanics of materials is based on simplifications
that can be justified with Saint Venant’s principle. We often replace loads
(including support reactions) by their resultants and ignore the effects of
holes, grooves, and fillets on stresses and deformations. Many of the simpli-
fications are not only justified but necessary. Without simplifying assump-
tions, analysis would be exceedingly difficult. However, we must always
keep in mind the approximations that were made, and make allowances for
them in the final design.



