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PART I

NON~DEGENERATE SMOOTH FUNCTIONS ON A MANIFOID.

§1. Introduction.

In this section we will i1llustrate by a specific example the situ-
ation that we will investigate later for arbitrary manifolds. FEet us con-
sider a torus M, tangent to the plane V, as indicated in Diagram 1.

Diagram 1.

Iet f: M= R (R always denotes the real numbers) be the height
above the V plane, and let M® be the set of all points x € M such that
f(x) < a. Then the following things are -true:

(1) If a<0< f£f(p), then M* 1s vacuous.

(2) If f(p) <& < f(g), then M* 1is homeomorphic to a 2-cell.

(3) If f£(q) < &< £(r), then M® 1is homeomorphic to & cylinder:

(4) If f(r) < a< f(s), then M* is homeamorphic to a compact
manifold of genus one having a circle as boundary:
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-

(5) If f(s) <a, then M* is the full torus.
In order to describe the change in Ma as a passes through one
of the points f(p),f(q),f(r),f(s)

it is convenient to consider homotopy
type rather than homecmorphism type.

In terms of homotopy types: -

(1) = (2) 41s the operation of attaching a 0-cell.
homotopy type 1s concerned, the space Ma,
tinguished from a O-cell:

For as far as

f(p) < & < £(q), cannot be dis-

0

Here "~" me-ns is of the same homotopy type as."

(7 = (3) is the operation of attaching a 1-cell:
@ g

(3) = (4) 1s egain the operation of attaching a 1-cell:

Q)

(4) = (5) 1is the operation of attaching a 2-cell.

G

The precise definition of "attaching a k-cell" can be given as

follows. Iet Y be any topologicael space, and let

X - (x erR¥: x| <M

be the k-cell consisting of all vectors in Euclidean k-space with length s i
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The boundary
ek - (x eRr¥: lixll = 1}
willl be dencted by gt=1. e g: s¥*' %~ ¥ 1s a continuous map then
k
Y ug &

(Y with a k-cell attached by g) 1is obtained by first taking the 'topologi-

cal sum (= disjoint union) of Y and ek, and then ldentifying each
x € 85 yith g(x) € Y. To take care of the case k =0 1let e° be a
o _ gt

just the union of Y and a disjoint point.

point and let & be vacuous, so that Y with s 0-cell attached is
As one might expect, the points p,3q,r and s ét which the homo-

topy type of Ut changes, have a simple characterization in terms of - f.
They are the critical points of the function. If we choose any coordinate
system V(x,y) near these points, then the derivatives -g—f% and g—g- are
both zero. At p we can choose (x,y) so that f = x4 ye, at s so
that f = constant -x2 - y?,» and at g and r so that f = constant +
x2 - ya. Note that the number of minus signs in the expression for £ at
each point is the dimension of the cell we must attach to go from M* to
Mb, where a < f(point) < b. Our first theorems will generalize these

facts for any differentiable function on a manifold.

REFERENCES
For further information on Morse Theory, the following sources are
extremely useful.

M. Morse, "The calculus of variations in. the large," American
Mathematical Society, New York, 1934.

H. Seifert and W. Threlfall, '"Variationsrechnung im Grossen,"
published in the United States by Chelsea, New York, 1951.

R. Bott, The stable homotopy of the classical groups, Annals of

Mathematics, Vol. 70 (1959), pp. 313-337. "
R. Bott, Morse Theory and its application to homotopy theory,

Lecture notes 'by A. van de Ven (mimeographed), Uni‘versity of
Bonn, 1960.
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§2. Definitions and Lemmas.

The words "smooth" and "differentisble" will be used interchange-
ably to mean differentiable of class C™. The tangent space of & smooth
manifold M at a pqint p will be denoted by TMp If g: M= N 1is a
smooth map with g(p) = @, then the induced linear map of tangent spaces
will be denoted by g,: 'I‘Mp - TNq.

Now let f be a smooth real valued function on a manifold M. A
point p € M 1s called a critical point of f if the induced mép
£yt TM.p =T Rﬂp) is zero. If we choose a local coordinate system
1,...,xn) in a neighborhood U of p this means that

af af
D). = s O
CwT "

The real number f(p) 1s called a critical value of f.
We denote by M* the set of all points x € M such.thst f(x) < a.
If a 1s not a critical value of ° f _then it follows from the implicit

(x

(p) =0 .

function theorem that M* 1is a smooth manifold-with-boundary. The boundary
£7'(s) 1is a smocth submanifold of M.

A critical point p 1s called non-degenerate if and only if the

matrix 5

( axiaii (p))
is non-singular. It can be checkeﬁ directly that non-degeneracy does not
depend on the}oordinat.e system. This will follow also from the following
intrinsic definition.

If p is a critical point of f we define a symmetric bilinear
functional f,, on 'mp, called the Hessian of f at p. If v,we 'l‘up
then v and w have extensions ¥ and ¥ to vector fields. We let
Fan(V,w) = \'Fp(?l.(f)), where Vp is, of ceurse, just v. We must show that
this is symmetric and well-defined. It is symmetric because

Vp(q(f)) - Qp(i)(f)) = [i‘f,ﬁ’]p(f) =0

wher~ [¥,¥] 1is the Poisson bracket of ¥ and ¥, and where [V,W]p(f) -0

* Here W(f) denotes the directional derivative of f in the direction .
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since f has p as a critical point.

Therefore fy, 1s symmetric. It is now'clearly well-defined since

i‘t‘ (W(£)) = v(¥(f)) 4is independent of the extension ¥ of v, while
?i (¥(£)) 1; independent of W.

I¥ (x‘,...,xn) is a local coordinate system and v = I a; _i'
w=LD we can take ¥ = ij_j where by nowdenotesacon-

stant function. Then

2
LanlV,¥) = V(D) (D) = V(E b, i‘}) - F e =5 @

2
80 the matrix —Ija 3 (p)) represents the bilinear function f with
XX a

respect to the basis a—zrl‘p,..., -;—xnlp

We can now talk about the index and the mullity of the bilinea.t"
functional fy, on TH . The index of a bilinear functionsl H, on & vec-
tor space V, 1is defined to be the maximal dimension of a subspace of V
on which H 1s negative défimte; the nullity is the dimension of the null-
space, i.e., the subspace consisting of all v € V such that H(v,w) = 0
for every w € V. The point p 1is obviously a non-degenerate cri‘tioal
point of f if and only if f,, on 'I'M.p has nullity equal to 0. The
Andex of fyy on ’I'Mp will be referred to simply as the index of f at p.
The Iemma of Morse shows that the behaviour of f at p can be completely
described by this index. Before stating this lemma we first‘ prove the

following:e

.

IEMMA 2.1. let f be a C” function in a convex neigh-
borhood V of 0 in R™®, with f(0) = 0. Then

£Xy,. 0 ,Xy) = S: Xi&y (X, 00, %)

for acme suitable o functions 8y defined in Vv, with
81(0) = 3— (0).

sl ar(tx, ..., tx) sl o
20k, ongB) = [} ——geBe aten [ 3L (e txdemy At
) 011 L -
1

Therefore we can let gy (X,,...,Xy) -f gg_i (tx,,...,bg)‘ dat . ’
& :
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I. NON-DEGENERATE FUNCTIONS

Iet p be a non-degenerate
Then there is a local coordinate

(ILemma of Morse).

critical point for f.

system (y‘,..-,yn) in a neighborhood U of p with
for £11 1 and such that the identity

yi(p) =0

£t - (3% .. - (3
holds throughout U,

PROOF :

then X must be the index of f at p.

W e To 1

F(Q) = £(p) - (2' (@)% ... = (2% + (2 (@)? +

then we have

which s;hows that the matrix representing f,,

3 £
3z PN A

where

-2 If 1=

d%f

e (p) =

dz;

is

l')E + (y)‘”)2 ¥ oo ¥ (Yn)2

A 1s the index of f at p.

We first show that if there 1s any such expression for f,

For any ccordinate system

.

vee + (2MQ)) %

J<r,,
2 if 1=35>n,

0 otherwise ,

with respect to the basis

Therefore there 1s a subspace of TlVLp of dimension X where f,, 1s nega-

tive definite, and a subspace V of dimension n-\ where f,,

1s positive

definite. If there were a subspace of 'I'IVLp of dimension greater than

on which fy, were negative definite then this subspace would intersect V,

which is clearly impossible.
We now show that a suitable coordinate system (y1 saow T

Therefore

A 1s the index of f,,.

exists.

Obviously we can assume that p is the origin of R™ and that f(p) = £(0)

By 2.1 we can write

for

(X, 000,%p)
eriticel point:

n

Xy ,eee,Xy) = z xjgj(xv...,xn)

i=

in some nelghborhood of, 0.

83(0) =

Since 0 1s assumed to be &

of
(0) =0 .
axd
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Therefore, applying 2.1 to the gj we have

gj(x”...,xn) = 1% xihij(x“...,xn)'
=1

for certain smooth functions hi 3° It follows that

o

PRy 00e,Xy) = z xixjhij(xl,...,xn), 5

,31

We can assume that hyy = hji’ since we can write ﬁij = -lé-(h“-p hji)'
and then have 5.13 =.ﬁji and f = I xixjﬁij . Moreover the matrix (513(°))

. 2 4
is equal to (%a—?—g-‘f(o)), and hence is non-singular.
X~ Ox y

There is a non-singular transformation of the coordinate functions
which gives us the desired expression for f, 1in a perhaps snn.ller neigh-
borhood of 0. To see this we just imitate the usual dlagonalization proof
for quadratic forms. (See for example, Birkhoff and Maclane, "A survey of
modern algebra," p. 271.) The key step can be described as i‘ollaws. )

Suppose by induction that there exist coordinates wu,,...,u, in
& neighborhood U1 of 0 so that

fn:(u1)2_1..._t(ur_1)2+ z uiujﬂij(ul,...,un)'
1,3>P
throughout U,; where the matrices (Ku(u],...,un)) are symmetric. After
a lineer change in the last n-rs+1 coordinates we may assume that -H,.(0) £ 0.
let g(u,,... ,u.n) denote the square root of |!§,r(u1,.. .,un) |. This will
be a smooth, non-zero furiction of w,,...,u; throughout some smaller neigh-
borhood U, CU, of 0. Now introduce new coordinates VisreesVp by

vy o= Uy for 1 4 r
vl ,eee,un) = g(u1,...,un)[ur + 2 “1‘&:-‘“1'-'-»%)/Brr(“w'“"’n)]'
i>r

It follows from the inverse function theorem that v,,...,v,

coordinate functions within some sufficiently small neighborhood U3 of 0.

will serve as

It is easily verified that f can be expressed as

f = z + (vj_)2 + Z vivJH;_J(\v,,...,vn)
1i<r 1,I>r
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throughout U3. This completes the induction; and proves Lemma 2.2,
COROLLARY 2.3 Non-degenerate critical points are isolated.

Examples of degenerate critical points (for functions on R and
Ra) are given below, together with pictures of their graphs.

Y

. :

(a) £(x) = x>. The origin (b) F(x) = em1/x sin®(1/x)

1s a degenerate critical point. The origin is a degenerate, and
non-isolated, critical point.

(c) f(x,y) = x3 - 3xy? = Real part of (x + 1y)°.
(0.#) ~is-a degsnerate critical point (e "monkey saddle").
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(a) f(x,y) = x°. The set of critical points, all of which

are degenerate, is the x axis, which is & sub-manifold of R2,

(e) . f(x,y) = x2y2. The set of critical points, all of which are
degenerate, consists of thie union of the x and y axis, which is
not even a sub-manifold of Ra. :
We conclude this section with a discussion of 1-parameter groups of
diffeomorphisms. The reader is referred to K. Nomizu,"L:l.e Groups and Differ-

ential Geametry,’' for more details.
A 1-parameter group of diffeomorphisms of a manifold M 1is a C”

map
?: RxM —-M
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such that
1) for each t € R the map Py M —- M defined by
94(a) = o(t,q) 1is a diffeomorphism of M onto itself, .
2) for all t,s € R we have P, = Pt ° Pg

Given a 1-parameter group ¢ of diffeomorphisms of M we define

a vector field X on M as follows. For every smooth real valued function

< o flon(q)) - £(q)
1im th < q
XD = Xl ————

This vector field X is said to generate the group o.

LEMMA 2,4, A smooth vector field on M which vanishes
outside of a compact set K.C M generates a unigque 1-
parameter group of diffeomorphisms of M.

PROOF': . Given any smooth curve .
t = c(t) eM

it 1s convenient to define the velocity vector

de
aE € TMc(t)

by the identity $&(r) - pMB L(EB) - £(8) . (Compare §6:) Now let o

be a 1-parameter group of diffeomorphisms, generated by the vector field X.
Then for each fixed q the curve

t = 94(q)

satisfies the differential equation
do, (q)
dt o x@c(q) *

with initial condition' g9,(q) = q. This is true since

do,(q) lm  TOen(@) - fog@)  14n  flep(®) - £(p) -
&t =n=o W et X0,

where p = ¢.(q). But ft 1s well known that such a differential equation,
locally, has & unique solution which depends smoothly on the initial condi-
tion. (Compare Graves, "The Theory of Functions of Real Variables,)'p. 166.
Note that, in terms of local coordinates u',...,u®, the differential equa-

dui i, 1 n
tion takes on the more familier form: g = x(u,...,u), 1=1,...,0n.)
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Thus for each point of M there exists a neighborhood U and a
number € > 0 so that the differential equation
doy(q) .
-3 " 94(2)? 95(a) = a
has a unique smooth solution for q € U, |t| < e.

The compact set K can be covered by a finite number of such
neighborhoods U. Let €y > 0 denote the smellest of the corresponding
numbers €. Setting q>t(q) =q for q ¢ K, 1t follows that this differen-
tial equation has a unigue sclution qzt(q) for |t| < e, and for all
q € M. This solution is smooth as a function of both variables. Further-
more, it is clear that o, . = ¢y ° 9, providing that [tl, 5], [t+s] < g4
’fheref‘ore each such Py is a diffeomorphism.

It only remains to define ¢, for |[t| > e,. Any number t can
be expressed as & multiple of e /2 plus a remainder r with |[?| < eo/e :
If- it k(so/z) +r with k> 0, set

0, = Q@ ° o aea O @ ° Q.
t e,/2 e,/2 e,/2 r
vhere the transformation o /2 is iterated k times. If k< 0 1t is
0
only necessary to replace g /2 by o_. /2 iterated -k times: Thus Py
(o] 0
is defined for all values of t. It is not difficult to verify that ¢, 1s

well defined, smooth, and satisfies the conditior Dpeg = P ° Og + This
completes the proof of Lemma 2.k

REMARK: The hypothesis that X vanishes outside of a compact set
cannot be omitted, For example let M be the open unit interval (0,1) CR,
end let X be the standard vector field aqﬁ on M. Then X does not
genérate any 1-paremeter group of diffeomorphisms of M.
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§3. Homotopy Type in Terms of Critical Values.

Throughout this section, if f 1s a real valued function on a
menifold M, we let i
M. (-8l alpeM: f(p) <a).

THEOREM 3.1. Iet f be a smooth real valued function
on a manifold M. ILet a < b and suppose that the set
f"(a,b], consisting of all p € M with a < f(p) < b,
is compact,*and contains no critical points of f. Then
M® 1is diffeomorphic to MP. Furthermore, M® is a de-
formation retract of Mb, so that the inclusion map

v M Mb is a homotopy equivalence.

The idea. of the proof is to push Mb down to M® along the orthogo-
nal trajectories of the hypersurfaces f = constant. (Compare Diagram 2.) =

Diagram 2.

Choose & Riemannian metric on M; and let <X,Y> denote the
inner product of two tangent vectors, as determined by this metric. The
gradient of f 1is the \}ector field grad f on M which Is charé’i':ﬁﬁrized .
by the identity" ) '

<X, grad £ = X(f)
(= directiom;l derivative of f along X) for any vector field X. This
vectar field grad f vanishes precisely at the critical points of f. If

- In classical notation, in tem§ of locel coordinaiges u' pie .,un,, the

gradient has components I J ‘ f
r ] Si E_f



