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Preface

The purpose of this text is to offer a comprehensive and self-contained pre-
sentation of some of the most successful and popular domain decomposition
methods for partial differential equations. Strong emphasis is put on both al-
gorithmic and mathematical aspects. In addition, we have wished to present
a number of methods that have not been treated previously in other mono-
graphs and surveys. We believe that this monograph will offer something new
and that it will complement those of Smith, Bjgrstad, and Gropp [424] and
Quarteroni and Valli [392]. Our monograph is also more extensive and broader
than the surveys given in Chan and Mathew [132], Farhat and Roux [201], Le
Tallec [308], the habilitation thesis by Wohlmuth [469)], and the well-known
SIAM Review articles by Xu [472] and Xu and Zou [476).

Domain decomposition generally refers to the splitting of a partial differen-
tial equation, or an approximation thereof, into coupled problems on smaller
subdomains forming a partition of the original domain. This decomposition
may enter at the continuous level, where different physical models may be
used in different regions, or at the discretization level, where it may be con-
venient to employ different approximation methods in different regions, or in
the solution of the algebraic systems arising from the approximation of the
partial differential equation. These three aspects are very often interconnected
in practice.

This monograph is entirely devoted to the third aspect of domain decompo-
sition. In practical applications, finite element or other discretizations reduces
the problem to the solution of an often huge algebraic system of equations.
Direct factorization of such systems might then not be a viable option and
the use of basic iterative methods, such as the conjugate gradient algorithm,
can result in very slow convergence. The basic idea of domain decomposition
is that instead of solving one huge problem on a domain, it may be conve-
nient (or necessary) to solve many smaller problems on single subdomains a
certain number of times. Much of the work in domain decomposition relates
to the selection of subproblems that ensure that the rate of convergence of the
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new iterative method is fast. In other words, domain decomposition methods
provide preconditioners that can be accelerated by Krylov space methods.

The development of the field, and the increased interest in domain decom-
position methods, is closely related to the growth of high speed computing.
We note that in the June 2004 edition of the “Top 500” list, there are no
fewer than 242 computer systems sustaining at least 1.0 Teraflop/sec. Scien-
tific computing is therefore changing very fast and many scientists are now
developing codes for parallel and distributed systems.

The development of numerical methods for large algebraic systems is cen-
tral in the development of efficient codes for computational fluid dynamics,
elasticity, and other core problems of continuum mechanics. Many other tasks
in such codes parallelize relatively easily. The importance of the algebraic
system solvers is therefore increasing with the appearance of new computing
systems, with a substantial number of fast processors, each with relatively
large memory. In addition, robust algebraic solvers for many practical prob-
lems and discretizations cannot be constructed by simple algebraic techniques,
such as approximate inverses or incomplete factorizations, but the partial dif-
ferential equation and the discretization must be taken into account. A very
desirable feature of domain decomposition algorithms is that they respect
the memory hierarchy of modern parallel and distributed computing systems,
which is essential for approaching peak floating point performance. The devel-
opment of improved methods, together with more powerful computer systems,
is making it possible to carry out simulations in three dimensions, with quite
high resolution, relatively easily. This work is now supported by high qual-
ity software systems, such as Argonne’s PETSc library, which facilitates code
development as well as the access to a variety of parallel and distributed com-
puter systems. In chapters 6 and 9, we will describe numerical experiments
with codes developed using this library.

A powerful approach to the analysis and development of domain decompo-
sition is to view the procedure in terms of subspaces, of the original solution
space, and with suitable solvers on these subspaces. Typically these subspaces
are related to the geometrical objects of the subdomain partition (subdo-
mains, subdomain boundaries, interfaces between subdomains, and vertices,
edges, and faces of these interfaces). The abstract Schwarz theory, presented
in Chap. 2, relies on these ideas and the convergence of the resulting iterative
method is related to the stability of the decomposition into subspaces, certain
stability properties of the local solvers, and a measure of the ‘orthogonality’
of these subspaces. The strong connection between stable decompositions of
discrete functions in terms of Sobolev norms and the performance of the cor-
responding domain decomposition algorithm is not a mere way of giving an
elegant mathematical description of a method that already works well in prac-
tice, but it is often the way in which new powerful algorithms are actually
developed, especially for less standard discretizations such as edge elements
for electromagnetic problems.
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The book is addressed to mathematicians, computer scientists, and in
general to people who are involved in the numerical approximation of partial
differential equations, and who want to learn the basic ideas of domain de-
composition methods both from a mathematical and an algorithmic point of
view. The mathematical tools needed for the type of analysis essentially con-
sist in some basic results on Sobolev spaces, which are reviewed in appendix
A. The analysis also employs discrete Sobolev-type inequalities valid for finite
element functions and polynomials. These tools are developed in Chap. 4. A
basic knowledge of finite element theory and iterative methods is also required
and two additional appendices summarize the results that are needed for the
full understanding of the analysis of the algorithms developed in the main
part of this monograph.

The literature of the field is now quite extensive and it has developed
rapidly over the past twenty years. We have been forced to make some impor-
tant omissions. The most important one is that we do not consider multilevel
or multigrid methods, even though many of these algorithms can also be
viewed, and then analyzed, using similar techniques as domain decomposition
methods; the decomposition into subspaces is now related to a hierarchy of
finite element meshes. The inclusion of these methods would have required a
large effort and many pages and is likely to have duplicated efforts by real
specialists in that field; the authors fully realizes the importance of these al-
gorithms, which provide efficient and robust algorithms for many very large
problems.

Other omissions have also been necessary:

¢ As already mentioned, we only consider domain decomposition as a way
of building iterative methods for the solution of algebraic systems of equa-
tions.

o While we describe a number of algorithms in such a way as to simplify
their implementation, we do not discuss other practical aspects of the
development of codes for parallel and distributed computer systems.

e We only consider linear elliptic scalar and vector problems in full detail.
Indeed, the methods presented in this monograph can be applied to the
solution of linear systems arising from implicit time step discretizations
of time-dependent problems or arising from Newton-type iterations for
non-linear problems.

e Our presentation and analysis is mainly confined to low-order finite ele-
ment (h version) and spectral element (a particular p version) approxima-
tions. Some domain decomposition preconditioners have also been applied
to other types of p and to certain hp approximations and we only briefly
comment on some of them in Sect. 7.5. We believe that many important
issues remain to be addressed in this field.

® We have not touched the important problems of preconditioning plate and
shell problems.
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e Our presentation is restricted to conforming approximations. No precon-
ditioner is presented for, e.g., mortar methods or other approximations on
nonmatching grids.

o We have also been unable to cover the recent work on domain decom-
position methods in time and space which has originated with work by
Jacques-Louis Lions and Yvon Maday.

The authors wish to thank, besides the anonymous referees, the many
friends that have gone over this monograph or part of it and provided us
with important and helpful suggestions, references, and material. They are:
Xiao-Chuan Cai, Maksymilian Dryja, Bernhard Hientzsch, Axel Klawonn,
Rolf Krause, Frédéric Nataf, Luca Pavarino, Alfio Quarteroni, Marcus Sarkis,
Christoph Schwab, Daniel Szyld, Xavier Vasseur, and last, but not least,
Barbara Wohlmuth. We would also like to thank Charbel Farhat and Oliver
Rheinbach for providing us with several figures.

The authors also wish to thank different funding agencies for their support.
In particular, the first author acknowledges the partial support of the Swiss
National Science Foundation under Project 20-63397.00. The second author
has greatly benefited, over many years, from support from the US Department
of Energy and the National Science Foundation. Without this support, for
many students and short term visitors, etc., our progress would undoubtedly
been much slower. The second author also wishes to thank over a dozen of
doctoral students, who has contributed extensively to the development of the
field both in graduate school and in their careers.

We end this preface by summarizing the contents of the various chapters in
order to facilitate for the reader and to accommodate his/her specific interests.

In Chap. 1, Introduction, we present some basic ideas of domain decompo-
sition. In particular, we show how matching conditions for traces and fluxes of
the differential problems give rise to conditions on the finite element algebraic
system, how simple subdomain iterations can be devised which contain many
of the ideas employed by more recent and powerful preconditioners for large
scale computations on many subdomains, and how some of the ideas employed
in the discussion of the Schwarz alternating method and block Jacobi precon-
ditioners naturally lead up to the abstract Schwarz theory. This is a chapter
that requires little in terms of mathematical background. We recommend it
to the reader who would like to understand the basic ideas of domain de-
composition without entering the specifics of the more complicated, practical
algorithms. The last section, Sect. 1.6 contains some less standard and earlier
results on overlapping methods and can be bypassed initially.

Chapter 2, Abstract Theory of Schwarz Methods, contains the standard
abstract theory of additive and multiplicative Schwarz algorithms, together
with some additional topics, such as coloring arguments and some hybrid algo-
rithms. The three basic ideas of stable decompositions, strengthened Cauchy
inequalities, and stable local solvers contained in three assumptions in Sect.
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2.3 are central and therefore recommended in order to prepare for the chapters
that follow.

Chapter 3, Overlapping Methods, presents overlapping preconditioners in
a more general way than is normally done, since we allow for general coarse
meshes and problems. In addition, the chapter contains a section on scaling
and quotient space arguments, which are routinely employed in the analysis of
domain decomposition preconditioners. The sections on restricted algorithms
and alternative coarse problems can be bypassed initially.

In Chap. 4, Substructuring Methods: Introduction, we present the basic
ideas of iterative substructuring methods, which are based on nonoverlapping
partitions into subdomains, interior and interface variables, vertex, edge and
face variables, Schur complement systems, and discrete harmonic extensions.
These notions, at least at a basic level, are necessary in order to understand
the iterative substructuring methods developed in the chapters that follow.
The last section, Sect. 4.6 contains the Sobolev type inequalities necessary to
fully analyze iterative substructuring methods and is necessary for the reader
who also wishes to understand the proofs in the chapters that follow.

Chapter 5 is devoted to Primal Iterative Substructuring Methods for prob-
lems in three dimensions. In Sect. 5.3, we first treat the problem of devising
effective local solvers by decoupling degrees of freedom associated with the
vertices, edges, and faces of the subdomain partition. In Sect. 5.4, we then
consider the problems of devising efficient coarse solvers, which are the key and
a quite delicate part of any successful preconditioners for three-dimensional
problems.

Chapter 6 is devoted to Neumann-Neumann and FETI Methods. We have
decided to present these algorithms and their analysis together; recent re-
search has established more and more connections between the two classes of
methods. A key ingredient of this analysis is the stability of certain average
and interface jump operators (cf. Sect. 6.2.3 and 6.4.3). One of the purposes
of this chapter is to present the basics of one-level FETI and the more re-
cent FETI-DP algorithms in a self-contained, sufficiently deep manner. For
the reader who is interested in only the basic ideas of these methods, we rec-
ommend Sect. 6.3.1 for one-level FETT and Sect. 6.4.1, where the important
ideas of FETI-DP can already be appreciated and understood in the more
intuitive two-dimensional case.

In Chap. 7, we present generalizations to Spectral Element Methods. A ba-
sic knowledge of the corresponding algorithms for the h version in the previous
chapters is required. The fundamental equivalence between spectral element
approximations and some finite element approximations on Gauss-Lobatto
meshes is the key ingredient for the development and analysis of both over-
lapping and nonoverlapping methods; this is the idea underlying the Deville-
Mund preconditioners reviewed in Sect. 7.2. Only those parts that are different
from the proofs of the h version are treated explicitly in this chapter. We have
also added a brief discussion and review of domain decomposition for more
general p and hp version finite elements with references to the literature.
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In Chap. 8, generalizations to Linear Elasticity problems are considered.
A basic knowledge of the corresponding algorithms for scalar problems in the
previous chapters is required and only those parts that are different from the
scalar case are treated explicitly.

In Chap. 9, some selected topics on Preconditioners for Saddle Point
Problems are presented. They are: some basic ideas about preconditioning
saddle-point problems, block-diagonal and block-triangular preconditioners,
and some overlapping and iterative substructuring methods. We primarily
consider the Stokes system (and briefly the related problem of incompressible
elasticity) and flow in porous media. As a general rule, we only review the ba-
sic results and refer the reader to the appropriate references for more detailed
and thorough presentations.

Chapter 10 is devoted to the field of domain decomposition precondition-
ers for Problems in H(div; £2) and H(curl; 2), which has developed relatively
recently. This chapter requires a basic knowledge of the corresponding algo-
rithms for scalar problems. Here, proofs are presented in full detail and this
chapter is intended as a self-contained and deep treatment of domain decom-
position methods for these problems, the analysis and development of which
is in general more technically demanding than for more standard scalar and
vector problems. Sections 10.1.1, 10.1.2, and 10.2.1, in particular, contain the
technical tools necessary for the analysis and can be bypassed by a reader
who is only interested in understanding the algorithms.

Chapter 11 is devoted to Indefinite and Nonsymmetric Problems. We first
present a generalization of the abstract Schwarz theory to nonsymmetric
and/or indefinite problems in detail. We also present some selected topics on
domain decomposition preconditioners which are commonly employed in large
scale computations but for which very little theory is available. These are al-
gorithms for convection-dominated scalar problems, the Helmholtz equations,
eigenvalue and nonlinear problems. This part is only intended as an overview
and to provide a collection of relevant references to the literature.

The volume ends with three appendices, references, and an index.

Ziirich, New York, Andrea Toselli
July 2004 Olof Widlund
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1

Introduction

1.1 Basic Ideas of Domain Decomposition

The basic ideas of domain decomposition are quite natural and simple. Con-
sider the Poisson equation on a region 2, in two or three dimensions, with
zero Dirichlet data given on 912, the boundary of £2. Suppose also that 2 is
partitioned into two nonoverlapping subdomains §2; :

ﬁ:ﬂlung, N =9, =00 N0,
see Fig. 1.1. We also assume that
measure(8§2, N8N2) >0, measure(82,N3N12) >0,

and that the boundaries of the subdomains are Lipschitz continuous, and
consider the following problem:

~Au=f in Q,
u=20 on 99. (11)

Under suitable regularity assumptions on f and the boundaries of the subdo-
mains, typically f square-summable and the boundaries Lipschitz, problem
(1.1) is equivalent to the following coupled problem:

Ay = f in 1,
u; =0 on 6ﬂ1 \F,
U = Uz onT,
Ouy Ouz (1.2)
ﬁl = —372 on I‘,
—Auy=f in s,

us =0 on 89, \ T.
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Here u; is the restriction of u to £2; and n; the outward normal to {2;. This
equivalence can be proven by considering the corresponding variational prob-
lems; see {392, Sect. 1.2]. The conditions on the interface I" are called trans-
mission conditions and they are also equivalent to the equality of any two
independent linear combinations of the traces of the functions and their nor-
mal derivatives. In the following, we will also refer to the normal derivative
as the fluz.

Fig. 1.1. Partition into two nonoverlapping subdomains.

Remark 1.1. The following one-dimensional example shows that some regu-
larity beyond f € H~1({2) is required. Let u be the weak solution of

- =-2§ in (~1,1), 13)

u(—1) =u(1) =0,
where §(z) is the delta function. The unique weak solution u € Hj(-1,1) is

u(z) = -1-z2<0,
= -l1+z2>0,

and its derivative has a jump at z = 0.

We note that this particular problem is quite relevant to domain decom-
position theory. In many algorithms, we will first eliminate all nonzero com-
ponents of the right hand side, of a finite element approximation, except those
on the interface, in this case z = 0. We are then left with an equation for the
remaining finite element error, which is a direct analog of equation (1.3).

1.2 Matrix and Vector Representations

In this section, we consider matrix and vector representations of certain op-
erators and linear functionals; we refer to appendix B for additional details.
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Starting with any domain decomposition algorithm written in terms of func-
tions and operators, we will be able to rewrite it in matrix form as a precon-
ditioned iterative method for a certain linear system.

We now consider a triangulation of the domain 2 and a finite element
approximation of problem (1.1). We always assume that subdomains consist
of unions of elements or, equivalently, that subdomain boundaries do not cut
through any elements. Such an approximation gives rise to a linear system

Au=f (1.4)

with a symmetric, positive definite matrix which, for a mesh size of h, typically
has a condition number on the order of 1/h2. Here,

A(l) ?2) A%l) u%l) f}l)
A = 0 A IF ) u = ufz) ’ f = f;z) ] (1'5)
A(l) A¢ Arr ur fr

where we have partitioned the degrees of freedom into those internal to f2;,
and to 23, and those of the interior of I'.

The stiffness matrix A and the load vector f can be obtained by subassem-
bling the corresponding components contributed by the two subdomains. In-

deed, if
, © 40
f*>—(§' ) A"’=(j{$ of ) (16

are the right hand sides and the local stiffness matrices for Poisson problems
with a Dirichlet condition on 82;\ I" and a Neumann condition on I', we have

Arr = AP} + AR}, fr=1P0 + 1P

In view of the transmission conditions in (1.2), we will look for an ap-
prozimation of the normal derivatives on I'. Given the local exact solution u;,
its normal derivative can be defined as a linear functional by using Green’s
formula. Thus, if ¢; is a nodal basis function for a node on I', we have, using
(1.2),

/ au'(ﬁj ds = /(Au;tbj + Vu; - Vg;)dz = /(—fd), + Vu; - V¢;) de.
2 2

An approximation, A, of the functional representing the normal derivative
can be found by replacing the exact solution u; in the right hand side with
its finite element approximation. Letting j run over the nodes on I' and using
the definition of the local stiffness matrix, we introduce the expression

A = A(') u(') + A(‘) f(') (1.7)



