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Preface

This book is intended to provide readers with a rigorous introduction to the theory
and application of estimation and association techniques. Skills taught in this book
will prepare students for solving application problems in this technical area.

Applied estimation and association is an important area for practicing engineers in
aerospace, electronics, and defense industries. A feature of this book is that it uses a
unified approach in problem formulation and solution. This approach serves to help
the students to build a sound theoretical foundation as well as to attain skills and tools
for practical applications. Many technical subjects and examples in this book repre-
sent a collection of the most relevant and important areas in state estimation and
association for practicing engineers based upon the authors” decades of experiences in
this field. For this reason, this book could be used by engineering schools offering
courses in this area as a textbook, as well as a reference book for students interested in
engineering applications and practical solutions when taking a more theoretical
course. For practicing engineers, this book can be used for self-study or as a textbook
for an in-house class. It can also be used for self-study by practitioners in the area of
state estimation and association.

The technical level of this book is equivalent to an advanced first- or second-year
graduate course in a control or system engineering curriculum. The students are
required to be familiar with the state-variable representation of systems and basic
probability theory including random variables and stochastic processes. The main
content of this book spans 10 chapters. Chapters 1 to 6 address the problem of estima-
tion with a single sensor observing a single object. Chapter 7 expands from a single
sensor to multiple sensors. Chapters 8 through 10 address the problem of measurement-
to-track association and track-to-track correlation by expanding the problem to mul-
tiple objects. A chapter-by-chapter description is included in the Introduction with
Concluding Remarks given at the end.

It is our goal that after learning the skills presented in this book, students will be
able to derive solutions to problems, or to conduct further research when needed in
order to solve their problems.
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Introduction

This book is intended to provide the reader with a rigorous introduction to the theory
and application of estimation and association techniques. Skills taught in this book
will prepare the student for solving practical problems in this technical area.

Estimation and association involves the extraction of information from noisy mea-
surements. Example applications include signal processing, tracking, navigation, and
so on [1, 2, 3]. The extraction of parameter values from signals in order to estimate
such attributes as time-of-arrival and sensor pointing angle is called parameter estima-
tion. A sensor signal may have come from a moving object. Determining the kinemat-
ics of a moving object is called state estimation. Associating measurements with state
estimates in a multiple object environment is a joint estimation and association
problem that is known as tracking [2-5]. Example applications include sensor surveil-
lance systems for air traffic control, guiding space vehicles toward a planet, extracting
information regarding a moving object with multiple-degree-of-freedom motions,
and so on.

The authors of this book, together with their colleagues, have been applying the
theory and techniques of estimation and association to real-world problems for the
past 40 years. They have taught classes to Lincoln Laboratory staftf members who are
involved in applying these skills as well as solving problems of their own. The content
of this book represents their collective experience in applying estimation and associa-
tion techniques. The technical level of this book is equivalent to a first year graduate
course in a control or system engineering curriculum. The students are required to be
familiar with the state-variable representation of systems, and basic probability theory
including random variables and stochastic processes. This book can also be used for
self-study by practitioners in the area of state estimation and association.

Theory and techniques developed in this book are for discrete time systems.
Although all physical systems are continuous in time, the measurements are taken in
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xxiv  Introduction

discrete time and the computational system that exploits the measurements operates
in discrete time. Furthermore, unique discrete time equivalence to continuous time
systems can be easily derived and implemented. The use of discrete time models
enables us to solve the problem without resorting to more abstract mathematics such
as measure theory and Ito calculus [6]. Homework problems are included at the end
of each chapter. The purpose is two-fold: (a) to develop students confidence in their
derivation skills so that they are able to apply them to new problems, and (b) to build
computer models so that they will have a useful set of tools for problem solving.

The theory and application of estimation has been a rich field of research for
decades. The landmark papers by Kalman [4], and Kalman and Bucy [5] gave the
optimal solution for state estimation of linear systems having Gaussian system and
measurement noise processes. The Kalman filter (KF) algorithm using state space
modeling makes it suitable for implementation with digital computers. Kalman’s
paper also laid the foundation for the concept of observability of a linear system, and
its relationship with the Fisher information matrix and the Cramer—Rao bound (CRB)
[1] for all unbiased state estimators. For this reason, it has gained enormous interest
from practicing engineers. However, most of the real-world application problems are
nonlinear. After Kalman’s publication, considerable effort was devoted to finding the
optimal filter for nonlinear systems (the counterpart of the KF for linear systems) [6].
All these studies came to the same conclusion: the solution of the optimal filter
requires an infinite dimensional representation that cannot be practically constructed.
Consequently, follow-on efforts focused on searching for suboptimal but practical
solutions.

The approach used in this book has two features: (a) it formulates the estimation
problem as an optimization problem using measurement data and a priori knowledge
of the system, and (b) it develops CRB solutions for each estimation problem
addressed. The first feature stresses that the solution to the estimation problem pro-
vides a best fit to the measurement data, the system model, and the a priori knowl-
edge. It will be shown that solution algorithms for most of the estimation problems
can be obrained this way. The CRB has been well known in signal processing for esti-
mating parameters embedded in the signal [1]. It has been applied to a wide range of
state estimation problems at Lincoln Laboratory [7]. In keeping with the second
feature, the CRB models for parameter and state estimation are derived for the exam-
ples considered or are included as part of the homework problem assignments.

In many engineering applications, noisy measurements are obtained on some
unknown variables. Variables of interest can collectively be represented as a vector.
Measurements can be arranged as a measurement vector or a set of measurement
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vectors. In the case where the vector of interest is constant or random, it is referred to
as a parameter vector. In the case where the vector of interest is time-varying and
follows a set of differential equations for a continuous-time system, or difference equa-
tions for a discrete-time system, it is termed a state vector. A parameter vector is a
special case of the state vector. The concept of a state vector is identical to the state
vector used in the state space representation of control systems [8]. A state vector can
be deterministic or random, depending on whether the system is deterministic or
driven by a random process.

The estimation problem is to find a solution to the unknown vector using measure-
ments and knowledge about the vector of interest. The measurements used in an
estimator are assumed to have come from a single object or dynamic system. This
assumption may not be true when multiple objects are closely spaced in sensor mea-
surements. The problem of state association is to determine whether a measurement
or a set of measurements comes from the same object.

This book has 10 chapters. Chapters 1 to 6 focus on solving the problem of estima-
tion with a single sensor observing a single object. Chapter 7 expands consideration
from a single sensor observer to multiple sensors. Chapters 8 through 10 address the
problem of association by expanding the problem to multiple objects and multiple
sensors. Concluding remarks and three appendices are offered at the end. They are
introduced individually below.

Chapter 1: Parameter Estimation

In this text, a parameter vector can be a constant vector or a random vector with
known distribution, but is never a random process. The foundation of estimation can
be understood most easily by solving the problem of parameter estimation. The esti-
mate of an unknown vector is obtained by selecting the vector that optimizes a perfor-
mance criterion or a cost function given the noisy measurements. Six performance
criteria are introduced in this chapter, namely, least squares, weighted least squares,
maximum likelihood, maximum a posteriori probability, conditional mean, and linear
least squares expressed as functions of the measurements [1, 4]. Explicit estimator
solutions for linear measurements with Gaussian measurement noise are developed
and the equivalence of all six estimators is discussed. It is shown that the a posteriori
density function of the parameter vector conditioned on measurements contains all
the information for estimating this parameter vector, regardless of whether the mea-
surement relationship is linear or nonlinear, and the conditional mean is the mini-
mum norm solution in the parameter space. For the linear measurement relationship,
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the closed form solution can be found. For nonlinear measurements, a numerical solu-
tion to the weighted least squares estimator is derived. The Cramer—Rao bounds for
all cases are derived. The relationship between weighted least squares estimator, mini-
mum variance estimator, and the conditional mean estimator is shown in the

appendix.
Chapter 2: State Estimation for Linear Systems

A state vector is the solution of a first order vector differential equation for a continu-
ous system, or difference equation for a discrete system [8]. When the initial condition
is a random variable and/or when the system is driven by a random system noise pro-
cess, the state vector represents a random process. For linear systems with Gaussian
system and measurement noise, the a posteriori density of the state conditioned on
measurements remains Gaussian, and the state estimate can therefore be completely
characterized by the conditional mean and covariance. This result is known as the Kal-
man filter [4]. The techniques used in Chapter 1 to derive the parameter estimator are
extended in this chapter to derive the KF solution for linear systems. These include the
conditional mean, weighted least squares, and Bayesian recursive evolution of the a
posteriori density function. The concept of smoothing is introduced, and the chapter
ends with derivations for the CRB for all cases of interest.

Chapter 3: State Estimation for Nonlinear Systems

Many physical systems and measurement devices are nonlinear. As mentioned before,
the conditional mean is the minimum norm estimate, and the a posteriori density
function of a state conditioned on measurements contains all the information neces-
sary for estimation. For linear systems with Gaussian noise, the a posteriori density
remains Gaussian. This property is, however, no longer true for nonlinear systems
even when the input and measurement noise processes are Gaussian. The recursive
Bayesian relationship governing the time evolution of the a posteriori density for arbi-
trary nonlinear systems was published within a few years of Kalman filter [9, 10], but
its exact solution for estimation remains open. For this reason, only approximated
solutions for the nonlinear estimation problems have found applications. The approx-
imated solutions include the use of the first order Taylor series expansion (the extended
Kalman filter) and the addition of the second order term in the Taylor series expansion
(the second order filter) [11]. Both filters are aimed at providing approximated condi-
tional means and covariance solutions for the state estimator. Additional nonlinear



