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PREFACE

Instead of investigating various isolated extremal problems in the theory of
schlicht functions, the authors have concentrated their efforts during the last
three years on the investigation of the family of extremal schlicht functions in
the large and this monograph is a presentation of the results of this research.
For the sake of completeness and readability it has been found desirable to in-
clude in some places work that has been published elsewhere by ourselves or
others. As most of the material is new, we have tried to point out carefully the
material which already exists in published form.

In the calculus of variations there are two classical approaches: (a) study of
specific problems uging local variations; (b) study of a whole class of extremal
problems and the investigation of the structure of the class as a whole. Varia-
tional methods in conformal mapping have been developed systematically in
the last few years, beginning with a paper by M. Schiffer in 1938. The various
publications on this subject during the last ten years have been mainly con-
cerned with results of type (a) whereas we have tried to develop in this mono-
graph a systematic appreach to results of type (b), but we do not believe that
our approach is the only one.

Since the investigation of extremal problems in conformal mapping embraces
- & rather wide field of research, we have confined ourselves to extremal problems
relating to a finite number of the coefficients in the Taylor expansion of a func-
tion which is regular and schlicht inside the unit circle. Results of type (b) then
concern the study. of the region of values of the first n coefficients considered as
s point in multi-dimensional euclidean space. This problem is only one of a host
of problems that can be formulated in the theory of schlicht functions, and in-
deed a much more general problem is mentioned in Chapter I. The authors
have chosen to investigate the coefficient problem not only because of its classical
interest but also because it seems likely that the methods developed in this
special case can be extended to many other problems. Dr. A. Grad has added a
chapter in which he investigates the region of possible values of the derivative
of a schlicht function at a fixed point inside the unit circle and his solution pro-
vides another example of these methods. A somewhat different version of his
work has already appeared in hektographed form.

We have tried to make this monograph self-contained to as large an extent
as practicable, and for this reason we have tried to keep the proofs and phrase-
ology on as elementary a level as possible. This has lengthened the proofs in
only a few cases and altogether it has increased the total length only slightly.
We feel’that sufficient background for reading this monograph is provided by a
knowledge which is comparable to that contained in standard books on the
‘theory of functions.

October, 1948. A. C. ScrAEFFER and D. C. SPENCER «
Purdue University and Stanford University -
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CHAPTER 1

HISTORY OF SCHLICHT FUNCTIONS
AND
ELEMENTARY PROPERTIES OF THE »nTH REGION

1.1. We begin with a brief history of the theory of schlicht functions, and we
mention only those results which bear directly on the coefficient problem or on
the problem of the region of values of f'(z).

A function f(2) is said to be schlicht in a domain if for any two points z and
2z of it we have f(21) = f(2:) only if z1 = 2. We shall be concerned with fune-
tions which are regular and schlicht in the unit circle | 2| < 1 and which are
normalized by the condition that the function vanishes at the origin and has a
first derivative there equal to 1. The class of functions

f@) =2+ a2 + ad + ---

which are regular and schlicht in | z| < 1 will be denoted by &.

The starting point in the investigation of schlicht functions was a paper by
P. Koebe in 1907 on the uniformization of algebraic curves (see [10])" in which
he proved, in particular, that there is a constant & (Koebe’s constant) such that
the boundary of the map of | z| < 1 by any function w = f(2) of class S is always
at a distance not less than k£ from w = 0. A related result is that there exist
bounds for the modulus of the derivative of f(z) at any point in |z | < 1, these
bounds depending only on | z | . These properties may be derived from the fact
that the family & is compact or, in other words, that & is a normal family in
the sense of Montel [15]. Actually, with the introduction of some such metric as

d(fi,f) = sup |fi —fo
lsl=1s2
S becomes a compact metric space.

Koebe’s result soon attracted the attention of others (Plemelj [18]; Gronwall
[7b, c]; Pick [17]; Faber [5]; Bieberbach [1]). Gronwall [7a] first gave the so-
called ‘‘area-principle’’ which asserts that if the function

9(2) = 1/z + ?:; b,2"

ig schlicht in | z | < 1 and regular except at 2 = 0 where there is a simple pole,
then

Srvlbs1

y=1
The image of | 2| <7, r <1, by w = g(z) leaves uncovered a certain domain

1 Square brackets refer to the bibliography at the end of the book.
1



2 COEFFICIENT REGIONS FOR SCHLICHT FUNCTIONS ]

of the w-plane, and the area-principle is an expression of the fact that the area
of this domain is positive. Gronwall’s paper seems to have attracted little or
no attention, but in 1916 the area-principle was rediscovered and used to ob-
tain the precise values of the constants in Koebe’s results ([1], [5]). It was found
that k = 1/4 and that

1—|z] ; 1+ |z|
1.1.1 = S ———=..
L a+1ap = VO =gy
Here the validity of the upper bound for all | z | < 1 gives the precise inequality”
(1.1.2) laa| = 2,

a result which was proved at the same time. Equality oecurs in (1.1.1) (either
side) or in (1.1.2) only for the function (Koebe function)

. z

(,1.1.3) f(Z) = (1+—B’.’Z)2’ ® real.
Because of the extremal character of the function (1.1.3) so far as the inequalities
(1.1.1), (1.1.2), and some others are concerned and because the nth coefficient
of this function is equal to » in modulus, it was conjectured in 1916 or shortly
thereafter that

Iaﬂl-s—n: n=23---.

% was approximately at this time that Bieberbach proposed the so-called coeffi-
¢ient problem for schlicht functions. This is the problem of finding for each n,
n = 2, the precise region V, in euclidean space of 2n — 2 real dimensions oc-
cupied by points (az, as, - - - , @a) corresponding to functions of class S. Several
years earlier Carathéodory [2] and others had focused interest on this type of
question by solving the coefficient problem for functions

(1.14) : p(z) =1+ 21 &z
which are regularin | z | < 1 and have positive real parts there.

The paper [13] of Léwner forms a landmark in the historic development of
this subject. Lowner gave a representation of the coefficients a, of a class of

sehlicht functions which lie everywhere dense in S, the representation being

in terms of integrals of a function «(#), [x({) | = 1. For example, the formulas
{Or as , a3 are:

{1.1.5) ay = —2 [ e "x() dr,

41.1.6) o= —2 [ T ) dr + 4 ( | " () df)".

3 On the other hand, (1.1.2) implies (1.1.1) (both the upper and lnwer bounds). See [12b].




[1.1] HISTORY AND PROPERTIES OF nTH REGION 3

It follows at once from (1.1.5) that | @ | = 2, and it is readily shown from (1.1.6)
{as Lowner pointed out) that

(1.1.7) las| < 3.

The inequality (1.1.7) seems to be beyond the power of the methods used by
Lowner’s predecessors.
In 1925 Littlewood [12a] proved that

(1.1.8) . l lanl <e-n, n=238--,

and two. years later Prawitz [19] gave a generalization of the area-principle.
The method used by Littlewood may also be negarded as a somewhat different
extension of the area-principle.

So far as the coefficient problem is concerned, mention must be made of the
paper by Rogosinski [21] in which he introduced the class of functions

f@) =z+ @z + a2’ + ---

which are regular in |z| < 1 and have the property that they assume real
values if and only if z is real. Rogosinski called such functions typically-real.
All coefficients of a typically-real function are real and Im (f) and Im (z) have the
same sign in |z| < 1. Schlicht functions of & with all coefficients real form
probably the most important subclass of these functions. We say that a class
of functions is convex if, given any two functions f, , f2 of the class, the weighted
mean

Mfi+ N fe
M+ Ae

also belongs to the class no matter how the positive weights A; , A are chosen.

. Typically-real functions clearly form a convex class, and so do the functions
(1.1.4) having posifive real parts. The relation between these two classes is
extremely simple. In fact, if f is typically-real, then

(1.1.9) p(2) =

is a function of positive real part with real coefficients and conversely. Hence the
coefficients c; of p are connected with the coefficients ax of f by the formulas

a+c+ -+ ce, k even,
(1.1.10) ¢ = Gr1 — Gpa1, o =
14+c+ e+ -+ + e, kodd

Thus the nth coefficient region of typically-real functions (that is to say, the
region of points (a2, a@s, ---, a.) belonging to these functions) is a simple
"linear map of the region of points (ci, ¢z, -+, ca-1). Since the latter region
is known (see [2]), the coefficient problem for typicelly-real functions is solved,
We rexx}a.rk that the nth coefficient region for typically-real functions is the

P4



4 COEFFICIENT REGIONS FOR SCHLICHT FUNCTIONS (1]

smallest convex region containing the nth coefficient region of schlicht func-
tions with real coefficients. For typically-real functions we have (as Rogosinski
[21] pointed out)

(1.1.11) |aa| S n, n=2323--,

and this estimate is a fortiori true of schlicht functions with real coefficients.®
Equality is attained for the function (1.1.3) where¢ = O or .

Star-like schlicht functions also form an important subelass of . A star-like
schlicht function w = f(z) maps | z| < 1 onto a domain in the w-plane having
the property that any point of it can be connected to the origin w = 0 by a
straight line lying entirely in the interior. A necessary and sufficient condition
for f(2) of class & to be star-like is that

1@

f(z)

be a function with real part positive in | z| < 1. Thus the coefficient regions
Va of star-like schlicht functions are also connected in a simple way with the
coefficient regions of functions (1.1.4) having positive real part, and so the coeffi-
cient problem for these functions is solved. For star-like functions the estimate
(1.1.11) is true, equality being attained for the star-like function (1.1.3) (see
[6b]).

The coefficient problem for schlicht functions was first seriously considered
by Peschl [16] in 1937, Peschl considered curves of Lowner type issuing from
boundary points of the nth region V, and extending to points of Vi , the coeffi-
cient region of star-like functions. He obtained qualitative results concerning
V. and also found the region of (a:, a;) when both a;, a; are real. In the fol-
lowing years variational methods were introduced into the theory and new
tools were thus provided ([6¢,d,e], [22], [23], [24], and [25b]). Elementary varia-
tions were applied by Marty [14] to obtain one or two necessary conditions for.
functions w = f(2) of class & maximizing | a, |. The systematic investigation
of schlicht functions by the variational method began, however, with the paper
by Schiffer [24a]. )

For many years Lowner’s method provided one of the most powerful attacks
in investigating schlicht functions. In recent years the variational approach
has been developed to a point where it is comparable to Léwner’s method in
effectiveness and in some cases it seems to have led further. For example, not
only has the variational method yielded many of the important results previously
obtained only from Lowner’s method (see [22a,b]), but it has also led to new
results such as the regions of variability discussed below (see also [22c¢,{]). How-
ever, the variational approach has by no means displaced Lowner’s method; rather
it has complemented it. Lowner’s integral representation for the coefficients,

p(2) = 2

3 The estimate (1.1.11) for functions of § with real coefficients was given independently
arld almost simultaneously by Dieudonné [4], Rogosinski [21], and Szdsz [26].
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as well as the condition of Dieudonné [4] and the interesting set of conditions
given by Grunsky [8] (see also [24f]), may be interpreted as giving necessary and
sufficient conditions on a set of numbers (a2, @3, +-+ , a,) in order that they
should be the coefficients of a function of class &, the conditions being expressed
in terms of infinitely many parameters. The method developed here expresses
conditions in terms of finitely many parameters, as we shall show.

The variational method gives necessary conditions in order that a function
w = f(2) of class § should extremalize an arbitrary function of its first n coeffi-
cients. The method of Teichmiiller [27] complements this result by proving
that the necessary conditions are sufficient.

The variational method is not only applicable to problems involving the
coefficients but is also applicable to a wide class of problems in conformal map-
ping. These more general problems are briefly described in 1.3 below and are
discussed in greater detail in [22d]. The authors have confined themselves mainly
to the coefficient problem although similar methods are applicable, at least in
principle, to the wider class of problems discussed in 1.3.

One of the oldest problems concerning functions of class & is that of deter-
mining the possible values of f/(21) at a fixed point 21, | 21| < 1. As mentioned
above (formula (1.1.1)), precise bounds for |f’(z) | were found in 1916. In
1936 Golusin [6a], using Lowner’s method, found the precise bounds for | arg f’(2)|
when f belongs to &, namely

4 arc sin | z|, Izlé-zf—,,a
(1.1.1) larg f'(2) | = |2 1

1=z’ o1

Here the multi-valued functions may be assumed to have their principal values.
The inequality.(1.1.1)’ complements (1.1.1) and constitutes the so-called “rot-a
tion theorem’ for schlicht functions. The method employed by Golusin to
prove (1.1.1) was later systematized by Robinson [20], who used it in finding
the region of points (| f(2) |, | f/(2) |), 2 fixed.

It is convenient to consider the region of values of f/(z;) in the plane of log
f'(z). The inequalities (1.1.1) and (1.1.1)’ (translated to the logarithmic plane)
place this region in a rectangle. In [22d] the authors derived a differential equa-
tion for functions f(z) whose derivative at the point z lies on the boundary of
the region of values. This differential equation involves essentially one real
parameter, and its solutions may be implicitly expressed in terms of elementary
functions. Dr. Grad has added a chapter (Chapter XV) in which he determines
the region of values of f(21), z1 any fixed interior point of the unit circle. Dr.
Grad’s solution determines the exact region inside the above rectangle which is
occupied by values log f’ (1), # fixed.

1.2, Before proceeding with the discussion of the coefficient regions V,, a
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more precise definition should be given. The point (az,.gs, -+, @) i8 said to
belong to the region V, in (2n — 2)-dimensional real euclidean space with
coordinates Re (as), Im (ap), - - - , Re (a.), Im (a,) if there is a funetion

@ = }:4: bz

of class S such that
b =a,, v=23:--,n.

We say that the point belongs to the function and that the function belongs
to the point. Only the region V: is given from earlier results; it is simply the
eircle

la| = 2.

In the following pages it will be shown that for any n, n = 2, the boundary
of V, can be expressed in terms of finitely many parameters. In fact, the bound-
ary will be dissected into finitely many portions II;, II;, ---, Iy and the
coordinates a; of the point (a2, as, ---, @,) on any one of these portions Il
will be functions of a finite number of parameters. The number of parameters
defining IT; will not exceed 2n — 3. If the number of parameters is equal to .
2n — 3, then IT; is a hypersurface of dimension 2 — 3. In some cases, hewever,
0, will depend on fewer than 2n — 3 parameters; and if this is the case, Il will
be a manifold of lower dimension which represents, for example, the inter-
section of two or more manifolds of higher dimension. In addition, we shall
investigate certain geometric properties of the regions V., .

In the case of the region V;, there are essentially two hypersurfaces IT; , IIg
of dimension 3 which together with their 2-dimensional intersection make up
the boundary. The parametric formulas for IT; and IT, are in terms of elementary
functions. Tables have been computed for the boundary of the region V; and:
are included in the Appendix. This region is 4-dimensicnal, but it has a rotational
property that makes it possible to define its entire structure from certain 3-dimen-
sional cross-sections. If

fi&) = 2 4+ @ + s + ---

is a function of class S, then the functions

(12.1) e (%) = z 4+ 0% + @™ + -+, © @ real,
and
(1.22) JO =z+@d+ad+ .-,

&, = complex conjuéate of az,
also belong to class . Thus if any one of the points

(a’l ’ as)y (a‘eil ) G;S’“ )) ((ff 3 0-’3)
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belongs to V3, so do the others; and, in particular, the entire domain can be
constructed from any cross-section arg (az;) = constant or arg (a;) = constant.
If (Re(a:), Re(as), Im(az)) is a point of the cross-section Im(a;) = 0, then
by a rotation (1.2.1) with 6 = = and by a reflection (1.2.2) it is seen that the
points (—Re(az), Re(as), Im(as)) and (Re(as), Re(as), —Im(as)) also belong
to this cross-section. Thus the cross-section Im(a,) = 0 is symmetric about
the planes Re(a,) == 0 and Im(a;) = 0.

Table I gives the part of the boundary of the cross-section Im(a;) = 0 which
lies in

Re(as) 2 0, Im(as) = 0.

Plate I on page xii shows the corresponding solid: It is one-half of the entire
cross-section Im(as) = 0. The yellow and blue surfaces correspond to IT; and
II, . The function w = f(z) belonging to a point of the yellow surface II; maps
| z| < 1 onto the w-plane minus a single curved analytic slit, whereas the func-
tion w = f(z) belonging to a point of the blue surface I, maps | z| < 1 onto
the w-plane minus a ray arg (w) = constant extending from w = oo to some
finite point where there is a fork composed in general of two prongs which
form angles 27/3 with the ray. We remark that to any boundary point of the
region V3 (more generally of the region V,) there corresponds a unique boundary
function w = f(z); that is, boundary points and boundary functions correspond
in a one—one way.

Table II gives the part of the boundary of the cross-section Im(az) = 0
which lies in

Re(as) 2 0, Im(as) = 0,

and this is one-fourth of the boundary since the cross-section Im(a;) = O is
syminetric about the planes Re(a;) = 0 and Im (a;) = 0. Plate II on page xiv
shows one-half of the entire cross-section Im(a;) = 0, namely the half Re(a.) = 0.

A detailed discussion of the domain V;is given in Chapter XIII.

We reinark that if we know the regions V,, then ihe coefficient problem is
solved for any simply-connected domain D containing z = 0. The coefficient
problem for a domain D containing z = 0 is that of finding the regions of values
of the coefficients in the development about z = 0 of functions

(1.2.3) f@) = 24 @ + ad + ---

which are regular and schlicht in D. If D is the full plane or the plane punctured
at one point, there is at most one function f(z) which is regular and schlicht in D
and of the form (1.2.3) near z = 0. For example, if D is the plane minus the
point z = 1, the only schlicht function of form (1.2.3) near z = 0 is f(2) =
z/(1 - 2). If D is not the full plane or the punctured plane, there is a function

= ¢(¢) which maps | { | < 1 onto D with { = 0 going intoz = 0. Near{ = 0 let

(1.2.4) z=p) =B + B+ B+ -, B >0
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Writing
@) = 67,
we have
90 = Je@) = T bot”
where
(1.2.5) b =B + 8P ar+ -+ + Ba,, ve=12---

Since the coefficients 8, (and so the 8{°) are given and since we know all pos-
sible values for the numbers b,/b; = b,/8: , by hypothesis, the coefficient regions
of the a, can be determined from (1.2.5).

1.8. The coefficient problem—that is, the problem of finding the domains
V.—is only one of a wide class of problems concerning the family & of schlicht
functions. In fact, let R be a closed set lying in |z| < 1 and let ¥, () be a
measure function defined in the space B (see [22d]). Given an integer n, there
is a number M = M (n) such that

(1.3.1) Ifm (z)l =M, v=0,1,2,:--,n,

for all z of R. Here f*(z) denotes the »th derivative of a function f of class S.
The inequality (1.3.1) is a consequence of the fact that the class & is compact.
Let F, (o, $o,°+° 4 ¢n, {») denote a complex-valued function which is con-
tinuous together with its first order partial derivatives in an open set containing
the closed set || S M (» = 0,1,2, - -+ ,n). Given the functions Fy, Fz, -+,
F .. and the measure functions ¥y , ¥z, * ** ,¥u , let

(1.3.2) P, ='j; Fr(f(z):fc?)’ cee ,f‘"’(z),f(")(z)) d'l")

forv = 1,2, - -+, m. If f(2) belongs to S, the point
P!= (Pl,Ps,"',P,.)

is a point in a euclidean space of 2m real dimensions, and the point Py is said
to belong to f(2). As f ranges over S, the point P; belonging to f ranges over a
set which we call D, . Since S is compact, the set D, is closed and bounded.
The problem is to find the region D, .

Many of the problems on schlicht functions which concern the values taken
in the interior of the unit circle, a8 opposed to boundary-value problems, are
¢ontained in this general formulation. The nth coefficient region V, is a particular
region D, , and the region of values of the derivative f/(2;) at a fixed point 2
s *in |z} < 1 is a particular region D, . Although we shall discuss here only the
special problem of the regions V, and Dr. Grad in Chapter XV will discuss
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the region of values of f/(z1), we remark that the methods used are applicable
at least to some extent to any problem contained in the above general formula-
tion. In the cases where P, as defined by (1.3.2) reduces to the form

k
P, = 2 Fr(f(zi)) ,@; e yf(‘)(zi)’ j(')(zl)),
the methods seem to be closely related to those used in the coefficient problem.

1.4. Before taking up the investigation of the domains ¥, , we note certain
of their elementary properties.

LemMa 1. The following statements are equivalend:
(i) (@z,as, - - ,an ) 18 an interior point of V, ; .
(ii) there i3 a bounded function of class S belonging to the point (G2, Gz, * -+ , Ga)}

(iii) there is a function w = f(2) of class & belonging to the point (as, s, ** - , Gn),

the closure of whose values w in | z| < 1 does not fill the whole closed w-plane.

Proor: If (i) is true, there is an e > 0 such that all points (cz, ¢s, -+, ¢n)
satisfying the inequality
Zz I C — @, I’ = 6’
belong to V¥, . In particular, the point
(Paz ’ pza3 PR P"-la-)

belongs to V., for some p > 1, and so there is a function
g (z) = 21 b, '
of class & with

b, = a0, y=2,8,:+,m.

Clearly the function

pg (2_") - 2 b'p—v+l s
\p

ye=1

belongs to class & and it is bounded for | z| £ 1. Moreover, its coefficients are

—r+1
b T =a,,- v=2,3,+-+,n,

and so it belongs to the point (as, @3, - -, a»). It has thus been shown that
(i) implies (ii). It is plain that (ii) implies (iii).

Assume next that (iii) is true. Let w, be an exterior point of the map of | 2| < ,

1 by w = f(z). Then there is a § > 0 such that the circle |0 —~ ws| < 5 lies



