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Preface

During the past three to four decades, computer science has been developed
rapidly and computing facilities have been adopted in almost every discipline.
At the same time, data sets collected from experiments or natural phenomena
have become larger and larger in both size and dimension. As a result, the
computers need to deal with these extremely huge data sets. For example,
in the biological sciences, a DNA sequence can be as long as several billions.
In finance research, the number of different stocks can be as large as tens
of thousands. In wireless communications, the number of users supported by
each base station can be several hundreds. In image processing, the pixels of
a picture may be several thousands.

On the other hand, however, in statistics, classical limit theorems have been
found to be seriously inadequate in aiding in the analysis of large dimensional
data. All these are challenging the applicability of classical statistics. Nowa-
days, an urgent need to statistics is to create new limiting theories that are
applicable to large dimensional data analysis. Therefore, since last decade, the
large dimensional data analysis has become a very hot topic in statistics and
various disciplines where statistics is applicable.

Currently, the spectral analysis of large dimensional random matrices (sim-
ply Random Matrix Theory (RMT)) is the only systematic theory that can be
applied to many problems of large dimensional data analysis. The RMT dates
back to the early development of Quantum Mechanics in the 1940’s and 50’s.
In an attempt to explain the complex organizational structure of heavy nuclei,
E. Wigner, Professor of Mathematical Physics at Princeton University, argued
that one should not compute energy levels from Schrédinger’s equation. In-
stead, one should imagine the complex nuclei system as a black box described
by n x n Hamiltonian matrices with elements drawn from a probability distri-
bution with only mild constraints dictated by symmetry considerations. Under
these assumptions and some mild conditions imposed on the probability mea-
sure in the space of matrices, one can find the joint probability density of the
n eigenvalues. Based on this consideration, Wigner established the well-known
semi-circular law. Since then, RMT has been developed into an active research
area in mathematical physics and probability.

Due to the need of large dimensional data analysis, the number of re-
searchers and publications on RMT has been growing rapidly. As an evidence,
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we list down the following statistics searched from Mathscinet database under
keyword Random Matrix on 11 April 2008:

Table 0.1 Number of publications on RMT over every 10-year period since 1955

1955 1964 [1965—1974 [1975—1984 |1985—1994 |1995—2004|2005-04.2008
23 138 249 635 1205 493

The purpose of this monograph is to introduce the basic concepts and re-
sults of RMT and some applications to wireless communications and finance
statistics. The readers of this book would be graduate students and researchers
who are interested in RMT and/or its applications to their own research ar-
cas. As for the theorems in RMT, we only provide an outline of their proofs.
The detailed proofs are referred to the book Spectral analysis of large dimen-
sional random matrices by Bai, Z. D. and Silverstein, J. W. (2006). As for the
applications to wireless communications and finance statistics, we are more
emphasizing the problem formulation to illustrate how the RMT is applied to,
rather than the detailed mathematical derivations and proofs.

Special thanks go to Mr. Liuzhi Yin who contributed to the book by pro-
viding editing and extensive literature review, and to Ms. Yiyang Pei for proof-

reading.

Changchun, China Zhidong Bai
Hefei, China Zhaoben Fang
Singapore Yingchang Liang

April 2008
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1 Introduction

1.1 History of RMT and Current Development

The aim of this book is to introduce main results in the spectral theory of
large dimensional random matrices (RM) and its rapidly spreading applica-
tions to many applied areas. As an illustration, we briefly introduce some of
its applications to wireless communications and finance statistics.

In the past three or four decades, a significant and constant advancement in
the world has been in the rapid development and wide application of computer
science. Computing speed and storage capability have increased rapidly. This
has enabled one to collect, store and analyze data sets of huge size and very
high dimension. These computational developments have had strong impact
on every branch of science. For example, R. A. Fisher’s resampling theory had
been silent for more than three decades due to the lack of efficient random
number generators, until Efron proposed his renowned bootstrap in the late
1970’s; the minimum L,-norm estimation had been ignored for centuries since
it was proposed by Laplace, until Huber revived it and further extended it to
robust estimation in the early 1970’s. It is difficult to imagine that these ad-
vanced areas in statistics would have reached such deep stages of development
if there were no such assistance from the present-day computers.

Although modern computer technology helps us in so many aspects, it also
brings a new and urgent task to the statisticians. All classical limiting theorems
employed in statistics are derived under the assumption that the dimension of
data is fixed. However, it has been found that the large dimensionality would
bring intolerable error when classical limiting theorems is employed to large
dimensional statistical data analysis. Then, it is natural to ask whether there
are any alternative theories that can be applied to deal with large dimensional
data. The theory of random matrix (RMT) has been found as a powerful tool
to deal with such problems associated with large dimensional data.

1.1.1 A Brief Review of RMT

RMT traces back to the development of quantum mechanics (QM) in the
1940’s and early 1950’s. In QM, the energy levels of a system are described by
eigenvalues of an Hermitian operator A on a Hilbert space, called the Hamil-
tonian. To avoid working with an infinite dimensional operator, it is common
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to approximate the system by discretization, amounting to a truncation, keep-
ing only the part of the Hilbert space that is important to the problem under
consideration. Hence, the limiting behavior of large dimensional random ma-
trices attracts special interest among those working in QM, and many laws
were discovered during that time. For a more detailed review on applications
of RMT in QM and other related areas, the reader is referred to the books
Random Matrices by Mehta (1991, 2004) and Bai and Silverstein (2006).

In the 1950’s in an attempt to explain the complex organizational struc-
ture of heavy nuclei, Wigner, E. P., Jones Professor of Mathematical Physics at
Princeton University, put forward a heuristic theory. Wigner argued that one
should not try to solve the Schrédinger’s equation which governs the n strongly
interacting nucleons for two reasons: firstly, it is computationally prohibitive;
which perhaps remains true even today with the availability of modern high
speed machines and, secondly the forces between the nucleons are not very
well understood. Wigner’s proposal is a pragmatic one: One should not com-
pute from the Schrodinger’s equation the energy levels, but instead imagine
the complex nuclei as a black box described by n x n Hamiltonian matrices
with elements drawn from a probability distribution with only mild constraint
dictated by symmetry consideration.

Along with this idea, Wigner (1955, 1958) proved that the expected spectral
distribution of a large dimensional Wigner matrix tends to the famous semi-
circular law. This work was generalized by Arnold (1967, 1971) and Grenan-
der (1963) in various aspects. Bai and Yin (1988a) proved that the spectral
-distribution of a sample covariance matrix (suitably normalized) tends to the
semicircular law when the dimension is relatively smaller than the sample size.
Following the work of Maréenko and Pastur (1967) and Pastur (1972, 1973),
the asymptotic theory of spectral analysis of large dimensional sample co-
variance matrices was developed by many researchers including Bai, Yin, and
Krishnaiah (1986), Grenander and Silverstein (1977), Jonsson (1982), Wachter
(1978), Yin (1986), and Yin and Krishnaiah (1983). Also, Bai, Yin, and Krish-
naiah (1986, 1987), Silverstein (1985a), Wachter (1980), Yin (1986), and Yin
and Krishnaiah (1983) investigated the limiting spectral distribution (LSD) of
the multivariate F-matrix, or more generally, of products of random matrices.
In the early 1980's, major contributions on the existence of LSD and their ex-
plicit forms for certain classes of random matrices were made. In recent years,
research on RMT is turning toward second order limiting theorems, such as the
central limit theorem for linear spectral statistics, the limiting distributions of
spectral spacings and extreme eigenvalues.
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1.1.2 Spectral Analysis of Large Dimensional Random Matrices

Suppose A,, is an n X n matrix with eigenvalues A;, 7 = 1,2,---,n. If all these
eigenvalues are real, e.g., if A,, is Hermitian, we can define a one-dimensional
distribution function

FAn(z) = %#{j <n:) <al, (L1.1)

called the empirical spectral distribution (ESD) of the matrix A,,. Here #E
denotes the cardinality of the set E. If the eigenvalues A;’s are not all real, we
can define a two-dimensional empirical spectral distribution of the matrix A,:

FAn(a,5) = —#{j <n: ROy) <7, 30y) <. (1.12)

One of the main problems in RMT is to investigate the convergence of
the sequence of empirical spectral distributions { F4»} for a given sequence of
random matrices { A, }. The limit distribution F' (possibly defective), which is
usually nonrandom, is called the Limiting Spectral Distribution (LSD) of the
sequence {A,}.

We are especially interested in sequences of random matrices with dimen-
sion (number of columns) tending to infinity, which refers to the theory of large
dimensional random matrices.

The importance of the ESD is due to the fact that many important statistics
in multivariate analysis can be expressed as functions of the ESD of some RM.
We now give a few examples.

Example 1.1 Let A be an n X n positive definite matriz. Then
n oo
det(A) = H Aj = exp (n/ log ZFA(d$)>.
=1 0

Example 1.2 Let the covariance matriz of a population have the form X =
X, +0%I, where the dimension of X is p and the rank of X4 is q(< p). Suppose
S is the sample covariance matriz based on n independent and identically
distributed (iid) samples drawn from the population. Denote the eigenvalues
of S by oy = 02 = -+ = op. Then the test statistic for the hypothesis Hy :
rank(X,) = g against Hy : rank(X,) > q is given by

2
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1.1.3 Limits of Extreme Eigenvalues

In applications of the asymptotic theorems of spectral analysis of large di-
mensional random matrices, two important problems arose after the LSD was
found. The first is the bound on extreme eigenvalues; the second is the con-
vergence rate of the ESD, with respect to sample size. For the first problem,
the literature is extensive. The first success was due to Geman (1980), who
proved that the largest eigenvalue of a sample covariance matrix converges
almost surely to a limit under a growth condition on all the moments of the
underlying distribution. Yin, Bai, and Krishnaiah (1988) proved the same re-
sult under the existence of the 4th order moment, and Bai, Silverstein, and
Yin (1988) proved that the existence of the 4th order moment is also necessary
for the existence of the limit. Bai and Yin (1988b) found the necessary and
sufficient conditions for almost sure convergence of the largest eigenvalue of a
Wigner matrix. By the symmetry between the largest and smallest eigenval-
ues of a Wigner matrix, the necessary and sufficient conditions for aimost sure
convergence of the smallest eigenvalue of a Wigner matrix were also found.

Comparing to almost sure convergence of the largest eigenvalue of a sam-
ple covariance matrix, a relatively harder problem is to find the limit of the
smallest eigenvalue of a large dimensional sample covariance matrix. The first
attempt made in Yin, Bai, and Krishnaiah (1983) proved that the almost sure
limit of the smallest eigenvalue of a Wishart matrix has a positive lower bound
when the ratio of dimension to the degrees of freedom is less than 1/2. Silver-
stein (1984) modified the work by allowing the ratio less than 1. Silverstein
(1985b) further proved that with probability one, the smallest eigenvalue of a
Wishart matrix tends to the lower bound of the LSD when the ratio of dimen-
sion to the degrees of freedom is less than 1. However, Silverstein’s approach
strongly relies on the normality assumption on the underlying distribution and
thus, it cannot be extended to the general case. The most latest contribution
was made in Bai and Yin (1993) where it is proved that under the existence
of the fourth moment of the underlying distribution, the smallest eigenvalue
(when p < n) or the (p — n + 1)-th smallest eigenvalue (when p > n) tends to
a(y) = o*(1—/y)?, where y = lim(p/n) € (0, 00). Compared to the case of the
largest eigenvalues of a sample covariance matrix, the existence of the fourth
moment seems to be necessary also for the problem of the smallest eigenvalue.
However, this problem has not yet been solved.

1.1.4 Convergence Rate of ESD

The second problem, the convergence rate of the spectral distributions of large
dimensional random matrices, is of practical interest, but has been open for



1.1 History of RMT and Current Development 5

decades. In finding the limits of both the LSD and the extreme eigenvalues of
symmetric random matrices, a very useful and powerful method is the moment
method which does not give any information about the rate of the conver-
gence of the ESD to the LSD. The first success was made in Bai (1993a, b),
where a Berry-Esseen type inequality of the difference of two distributions was
established in terms of their Stieltjes transforms. Applying this inequality, a
convergence rate for the expected ESD of a large Wigner matrix was proved to
be O(n~1/4), that for the sample covariance matrix was shown to be O(n~1/4)
if the ratio of the dimension to the degrees of freedom is apart away from one,
and to be O(n~%48) if the ratio is close to 1.

1.1.5 Circular Law

The most perplexing problem is the so-called circular law which conjectures
that the spectral distribution of a non-symmetric random matrix, after suit-
able normalization, tends to the uniform distribution over the unit disc in
the complex plane. The difficulty lies in that two most important tools used
for symmetric matrices do not apply for non-symmetric matrices. Further-
more, certain truncation and centralization techniques cannot be used. The
first known result was given in Mehta (1967) and in an unpublished paper
of Silverstein (1984) which was reported in Hwang (1986). They considered
the case where the entries of the matrix are iid standard complex normal.
Their method uses the explicit expression of the joint density of the com-
plex eigenvalues of the random matrix which was found by Ginibre (1965).
The first attempt to prove this conjecture under some general conditions was
made in Girko (1984a, b). However, his proofs have puzzled many who at-
tempt to understand, without success, Girko’s arguments. Recently, Edelman
(1995) found the conditional joint distribution of the complex eigenvalues of a
random matrix whose entries are real normal N(0,1) when the number of its
real eigenvalues is given and proved that the expected spectral distribution of
the real Gaussian matrix tends to the circular law. Under the existence of 4+¢
moment and some smooth conditions, Bai (1997) proved the strong version of
the circular law.

1.1.6 Central Limit Theory (CLT) of Linear Spectral Statistics

As mentioned above, functionals of the ESD of RM’s are important in multi-
variate inference. Indeed, a parameter 6 of the population can sometimes be
expressed as

o— / F(2)dF(z).



