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Preface

For some time I have felt there is a good case for raising the profile of
undergraduate geometry. The case can be argued on academic grounds
alone. Geometry represents a way of thinking within mathematics, quite
distinct from algebra and analysis, and so offers a fresh perspective on the
subject. It can also be argued on purely practical grounds. My experience
is that there is a measure of concern in various practical disciplines
where geometry plays a substantial role (engineering science for instance)
that their students no longer receive a basic geometric training. And
thirdly, it can be argued on psychological grounds. Few would deny that
substantial areas of mathematics fail to excite student interest: yet there
are many students attracted to geometry by its sheer visual content. The
decline in undergraduate geometry is a bit of a mystery. It probably has
something to do with the fashion for formalism which seemed to permeate
mathematics some decades ago. But things,are changing. The enormous
progress made in studying non-linear phenomena by geometrical methods
has certainly revived interest in geometry. And for material reasons,
tertiary institutions are ever more conscious of the need to offer their
students more attractive courses.

0.1 General Background

I first became involved in the teaching of geometry about twenty years
ago, when my department introduced an optional second year course
on the geometry of plane curves, partly to redress the imbalance in the
teaching of the subject. It was mildly revolutionary, since it went back to
an earlier set of precepts where the differential and algebraic geometry
of curves were pursued simultaneously, to their mutual advantage.

In the final year of study, students could pursue this kind of geometry
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Xiv Preface

by following traditional courses on the differential geometry of curves
and surfaces. But in the area of algebraic geometry, matters were more
problematic. A course on the geometry of algebraic curves seemed to
me to be the obvious kind of development. The problem was a dearth
of suitable texts. Some had developed from courses lasting for a whole
session, where it was possible to attain some distance. By contrast, I
was faced with a single semester course, offered over a period which
saw a decline in the technical accomplishments of our students. I simply
could not hope to be so ambitious. Also I find myself out of sympathy
with colleagues who fret that they fail to reach significant results. I
belong firmly to the school of thought which believes that it is far better
to obtain a thorough appreciation of the basics than to reach some
technical pinnacle. Elementary facts (for instance, the fact that the centre
of a circle can be defined projectively, rather than metrically) can have
a stunning impact on students. My view is that the few who wish to
pursue more advanced aspects of the subject can always proceed to
higher degrees where their needs will be met.

This book arose from my lecture notes after several years of experi-
mentation. It has gained enormously from the reaction of my students
over the years; they have proved to be my harshest critics, and my most
helpful advisers, and I owe them a great deal.

0.2 Required Mathematical Knowledge

The intending reader will probably want to know how much mathemat-
ical knowledge is assumed of him. Let me first state quite clearly that
one of my objectives was to make this book as accessible as possible. 1
am well aware of the needs of workers in other fields who do not have
a substantial mathematical background: and I feel strongly that it is the
very beginnings of the subject which need proper exposition. The more
experienced reader will find that this book can be viewed as a stepping
stone to many excellent texts which assume a higher level of mathematical
preparation. In the area of algebra, the most basic requirement is a good
understanding of the elements of linear algebra. The abstract concepts
of group, domain and field do occur, and are recalled in Section 2.2:
but they only occur in a fairly marginal way — you certainly should
not be put off just because you are not familiar with these ideas. More
substantially, much of the material rests on the unique factorization of
polynomials in several variables: however, all the necessary definitions
are given, the result itself is carefully stated, and references are given
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to the proof for those who wish to see it. In the area of analysis, I do
assume the elements of calculus in several variables; basically, you need
to be able to work out partial derivatives. The reader should be fluent
in handling complex numbers, particularly complex roots of unity which
appear in many of the calculations. Beyond that I only assume that the
reader has come across the Fundamental Theorem of Algebra, ie. the
statement that every polynomial of positive degree in a single variable
has at least one complex zero, but you only need the statement of the
result. As to geometry, it would certainly help to have a little background
(some familiarity with lines and conics for instance) but effectively the
book is quite self-contained. I made a conscious decision to make the
material independent of virtually any knowledge of topology. In practice
that means that a small number of statements are made without proof.
More regrettably, that decision precluded the possibility of developing
one of the great historical ideas of the subject, that complex curves can
be viewed as real surfaces.

0.3 Concerning the Structure

Concerning the structure of the book, I should say that roughly the first
half is devoted to curves in the (familiar) affine plane, and the second to
curves in the (less familiar) projective plane. I wanted my reader to feel
quite comfortable with the mechanics of handling affine curves before
making the conceptually difficult transition to the projective plane. One
of the main functions of this book is to place algebraic curves in their
natural setting (the complex projective plane) where their structure is
more transparent. For some readers, particularly those whose background
is not in mathematics, this may prove to be a psychological barrier. I
can only assure such readers that the reward is much greater than the
mental effort involved. History has shown that placing algebraic curves
in a natural setting provides a flood of illumination, enabling one much
better to comprehend the features one meets in everyday applications.
I made a deliberate effort to keep the individual chapters fairly short,
adopting the theory that each chapter revolves around one new idea;
likewise the sections are brief, and punctuated by a series of ‘examples’
illustrating the concepts. I have included a collection of exercises, designed
to illustrate (and even amplify) the small amount of theory. Each chapter
contains sets of exercises, each appearing immediately after the relevant
section. I felt it was a service to the mathematics community to gather
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together a coherent set of exercises for the benefit of teachers; many have
been culled from the older literature.

0.4 Concerning the Content

The content of the book is largely classical. There is a tendency in the
subject to overemphasize examples of curves drawn from the distant
past. I wanted to make the point that the resurgence of geometry is
based on the role it plays in the increasing mathematization of the
physical sciences. Thus I have indulged my own passion for the curves
which arise in engineering kinematics, a sadly neglected subject (the real
beginnings of theoretical robotics) which deserves to be better known
both for its intrinsic interest and its considerable mathematical potential.
1 make no apologies for the fact that conics occupy a substantial part
of the text; they play a significant role in geometry at this level, and
my view is that their intrinsic importance should be reflected in the
space devoted to them. On the same basis, cubics receive an extended
discussion. In particular, I regard the group structure on the cubic as one
of the most attractive topics of elementary geometry within the reach of
a mathematics undergraduate; for me, it is the mathematical equivalent
of a treasured holiday snapshot. So far as objectives are concerned, 1
felt it was sensible to get as far as Bézout's Theorem, to justify in some
measure the assertion that algebraic curves live naturally in the complex
projective plane.

Some topics are conspicuous by their absence. For instance, I have
great affection for the lost art of tracing algebraic curves, to which
Frost’s classic text on ‘Curve Tracing’ is a fitting memorial. Like archery,
it is a satisfying pursuit, of little relevance to the world we live in. But just
as the machine gun has rendered the bow obsolete, so the computer has
proved itself a superbly efficient tool for tracing curves at phenomenal
speeds. In this connexion, 1 am particularly grateful to Wendy Hawes,
who constructed a picturebook of algebraic curves using the graphics
facilities of the Pure Mathematics Department in The University of
Liverpool, and kindly allowed me to include her pictures. Finally, I offer
my warmest thanks to my friend and colleague Bill Bruce who read a
working draft, and produced a wealth of valuable comment.
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1
Real Algebraic Curves

Plane curves arise naturally in numerous areas of the physical sciences
(such as particle physics, engineering robotics and geometric optics) and
within areas of pure mathematics itself (such as number theory, complex
analysis and differential equations). In this introductory chapter, we will
motivate some of the basic ideas and set up the underlying language of
affine algebraic curves. That will also give us the opportunity to preview
some of the material you will meet in the later chapters.

1.1 Parametrized and Implicit Curves

At root there are two ways in which a curve in the real plane R? may be
described. The distinction is quite fundamental.

e A curve may be defined parametrically, in the form x = x(t), y = y(t).
The parametrization gives this image a dynamic structure: indeed at
any parameter value t we have a tangent vector (x'(t),y'(t)) whose
length is the speed of the curve at the parameter ¢t. An example is the
line parametrized by x = ¢t, y = t, with constant speed /2, another
parametrization such as x = 2t, y = 2t yields the same image, but at
twice the speed 2./2.

e A curve may be defined implicitly, as the set of points (x, ) in the plane
satisfying an equation f(x,y) = 0, where f(x,y) is some reasonable
function of x, y. For instance the line parametrized by x =¢, y = ¢
arises from the function f(x, y) = y — x. Such a curve has no associated
dynamic structure — it is simply a set of points in the plane.

Broadly speaking, the study of parametrized curves represents the
beginnings of a major area of mathematics called differential geometry,
whilst the study of curves defined implicitly represents the beginnings

1



2 Real Algebraic Curves

of another major area, algebraic geometry. It is the latter study which
provides the material for this book, though at various junctures we will
have something to say about the question of parametrization.

The common feature of many curves which appear in practice is that
they are defined implicitly by equations of the form f(x,y) = O where

f(x,y) is a real polynomial in the variables x, y, i.e. given by a formula
of the shape

fly) =) ayxy’
i‘]

where the sum is finite and the coefficients a;; are real numbers. There
is much to gain in restricting attention to such curves, since they enjoy
a number of important ‘finiteness’ properties. Moreover, it will be both
profitable and illuminating to extend the concepts to situations where
the coefficients a;; lie in a more general ‘ground field. In some sense
the complexity of a polynomial f(x,y) is measured by its degree, ie.
the maximal value of i + j over the indices i, j with a;; # 0. Given a
polynomial f(x,y) we define its zero set to be

Vi ={(x,y) €R*: f(x,y) = 0}.

Instead of saying that a point (x,y) lies in the zero set of a curve f
we may, for linguistic variety, say that (x,y) lies on the curve f, or
that f passes through (x, y). Note that the zero set (and the degree) are
unchanged when we multiply f by a non-zero scalar. It is for that reason
that we introduce the following formal definition. A real algebraic curve
is a non-zero real polynomial f, up to multiplication by a non-zero scalar.
The more formally inclined reader may prefer to phrase this in terms
of ‘equivalence relations’. Two polynomials f, g are equivalent, written
f ~ g, when there exists a non-zero scalar A for which g = Af. It is
then trivially verified that ~ has the defining properties of an equivalence
relation: it is reflexive (f ~ f), it is symmetric (if f ~ g then g ~ f), and
it is transitive (if f ~ g and g ~ h then f ~ h). A real algebraic curve is
then formally defined to be an equivalence class of polynomials under the
relation ~. So strictly speaking, a real algebraic curve is an equivalence
set of all polynomials Af(x, y) with 4 # 0, and any polynomial in this set
is a representative for the curve. In this book we will usually abbreviate
the term ‘algebraic curve’ to ‘curve’. Curves of degree 1, 2, 3, 4, ... are
called lines, conics, cubics, quartics, .... It is a long established convention
that the curve with representative polynomial f(x, y) is referred to as the
‘curve’ f(x,y) = 0. There is no harm in this provided you remember that



