[

JavaZse

TuRiNG [E) SRR G TH S N R 2 R 3 samss Cosiing

Javafiii A} PP T

(BE3ZhR * 353RR)

(3] David J. Barnes
=) Michael Kélling

Objeots ‘Furst |

wlth Java

| [l e=mmiEnnzRa

Objec!s First with Java =
A Practical Introducm Usmg Blue]

e —

David J. Barnes % i

teed Michael Kélling

Jects First
with Java

A Practical Introduction Using Bluel
Third Edition

AEHIISEEtHMiH.

e | TR 2

EHEWMmE (CIP) ¥iE

Javaifi i) % R FEJF1&TE: B3/ (%) BB (Bar-
nes, D.J.) ; (%) BtR (Kolling, M.) . —txi. A
BB AR #1:, 2008.4

(B RIFERGHREALEFE R 1)

ISBN 978-7-115-17515-1

LI+ ILOE- @F ML JAVAEE - BFiEit -
¥ IV.TP312

[fAS B A5 1R CIP R 7 (2008) 550060455

© Pearson Education Limited 2003, 2005, 2006.
This translation of OBJECTS FIRST WITH JAVA: A PRACTICAL INTRODUCTION USING
BLUEJ, Third Edition is published by arrangement with Pearson Education Limited.
NERE
AT T2 SR T RR I R A 200 1) 3 SR AR PP T A B AR A:, O T URAR I) R R R LB
B, miARJavalE S, AN R R ERGTRYIE, T8 TR, RIGEAZIRHEY,
fit TR, hREA . WEERH A RE., BIRGE; REAE T BEs, BERBA TR
Kbriz AT 2808 Javadi B8 5 LA B Javadm R SR8 Bluel , 2 454% MBI H SR A0 5 Aok SR HF, 1Hie
TREMBRFHA, JHIRME TR,
ABHNEHBAR, EAMFEREAT], LEEEHREFAME W A2 S2%, WELIHEN
FXE TR REFIE" SRR,
P R Ssv EHLRL 2 R 51
Java E XM RIEFIZIT (KR « F 3 b))
¢ F [#¢] David J. Barnes Michael Kolling
AT g Wit ¥
¢ ARIBHURRAEHRRORAT Jbsciis: o 4 i 14 5
% 100061 L FEff 315@ptpress.com.cn
FhE hitp://www.ptpress.com.cn
A S SCHR A B AR L AR
BreHIE S IERURAT AR
& JFA: 800x1000 1/16

Eigk. 32
T4 666 T 2008 {E 4 J1H 1R
EN%c: 13000 Mt 2008 7= 4 b5 s 1 e

EERAFEE S BT 01-2007-3071 5
ISBN 978-7-115-17515-1/TP
EM: 59.00 G
EERE N (010)88593802 ENEREMLE. (010)67129223
RER#EZ: (010)67171154

un Microsystems

Watching my daughter Kate, and her middle school classmates, struggle through a Java
course using a commercial IDE was a painful experience. The sophistication of the tool
added significant complexity to the task of learning. I wish that I had understood earlier
what was happening. As it was, I wasn’t able to talk to the instructor about the problem
until it was too late. This is exactly the sort of situation for which Blue] is a perfect fit.

BluelJ is an interactive development environment with a mission: it is designed to be used
by students who are learning how to program. It was designed by instructors who have
been in the classroom facing this problem every day. It’s been refreshing to talk to the
folks who developed BluelJ: They have a very clear idea of what their target is. Discussions
tended to focus more on what to leave out, than what to throw in. BlueJ is very clean and
very targeting.

None the less, this book isn’t about Bluel. It is about programming.
In Java.

Over the past several years Java has become widely used in the teaching of programming.
This is for a number of reasons. One is that Java has many characteristics that make it
easy to teach: it has a relatively clean definition; extensive static analysis by the compiler
informs students of problems early on; and it has a very robust memory model that elimi-
nates most ‘mysterious’ errors that arise when object boundaries or the type system are
compromised. Another is that Java has become commercially very important.

This book confronts head-on the hardest concept to teach: objects. It takes students from
their very first steps all the way through to some very sophisticated concepts.

It manages to solve one of the stickiest questions in writing a book about programming;
how to deal with the mechanics of actually typing in and running a progam. Most books
silently skip over the issue, or touch it lightly, leaving it up to the instructor to figure out
how to solve the problem. And leaving the instructor with the burden of relating the mate-
rial being taught to the steps that students have to go through to work on the exercises.
Instead, it assumes the use of BlueJ and is able to integrate the tasks of understanding the
concepts with the mechanics of how students can explore them.

I wish it had been around for my daughter last year. Maybe next year . . .

This book is an introduction to object-oriented programming for beginners. The main
focus of the book is general object-oriented and programming concepts from a software
engineering perspective.

While the first chapters are written for students with no programming experience, later
chapters are suitable for more advanced or professional programmers as well. In particular,
programmers with experience in a non-object-oriented language who wish to migrate their
skills into object orientation should also be able to benefit from the book.

We use two tools throughout the book to enable the concepts introduced to be put into
practice: the Java programming language and the Java development environment Blue]J.

Java

Java was chosen because of a combination of two aspects: the language design and its
popularity. The Java programming language itself provides a very clean implementation
of most of the important object-oriented concepts, and serves well as an introductory
teaching language. Its popularity ensures an immense pool of support resources.

In any subject area, having a variety of sources of information available is very helpful,
for teachers and students alike. For Java in particular, countless books, tutorials, exer-
cises, compilers, environments, and quizzes already exist, in many different kinds and
styles. Many of them are online and many are available free of charge. The large amount
and good quality of support material makes Java an excellent choice as an introduction
to object-oriented programming.

With so much Java material already available, is there still room for more to be said about
it? We think there is, and the second tool we use is one of the reasons . . .

Blued

The second tool, BlueJ, deserves more comment. This book is unique in its completely
integrated use of the BlueJ environment.

Bluel is a Java development environment that is being developed and maintained at the
University of Southern Denmark, Deakin University, Australia, and the University of
Kent in Canterbury, UK, explicitly as an environment for teaching introductory object-
oriented programming. It is better suited to introductory teaching than other environments
for a variety of reasons:

Preface to the instructor

W The user interface is much simpler. Beginning students can typically use the BlueJ
environment in a competent manner after 20 minutes of introduction. From then on,
instruction can concentrate on the important concepts at hand — object orientation and
Java — and no time needs to be wasted talking about environments, file systems, class
paths, DOS commands, or DLL conflicts.

W The environment supports important teaching tools not available in other environ-
ments. One of them is visualization of class structure. BlueJ automatically displays a
UML-like diagram representing the classes and relationships in a project. Visualizing
these important concepts is a great help to both teachers and students. It is hard to
grasp the concept of an object when all you ever see on the screen is lines of code! The
diagram notation is a simple subset of UML, again tailored to the needs of beginning
students. This makes it easy to understand, but also allows migration to full UML in
later courses.

H One of the most important strengths of the BlueJ environment is the user’s ability to
directly create objects of any class, and then to interact with their methods. This cre-
ates the opportunity for direct experimentation with objects, for little overhead in the
environment. Students can almost ‘feel’ what it means to create an object, call a
method, pass a parameter, or receive a return value. They can try out a method immedi-
ately after it has been written, without the need to write test drivers. This facility is an
invaluable aid in understanding the underlying concepts and language details.

Bluel] is a full Java environment. It is not a cut-down, simplified version of Java for teach-
ing. It runs on top of Sun Microsystems’ Java Development Kit, and makes use of the
standard compiler and virtual machine. This ensures that it always conforms to the offi-
cial and most up-to-date Java specification.

The authors of this book have several years of teaching experience with the BlueJ envi-
ronment (and many more years without it before that). We both have experienced how the
use of BluelJ has increased the involvement, understanding, and activity of students in our
courses. One of the authors is also a developer of the BlueJ system.

Real objects first

One of the reasons for choosing BlueJ was that it allows an approach where teachers truly
deal with the important concepts first. ‘Objects first” has been a battle cry for many text-
book authors and teachers for some time. Unfortunately, the Java language does not make
this noble goal very easy. Numerous hurdles of syntax and detail have to be overcome
before the first experience with a living object arises. The minimal Java program to create
and call an object typically includes:

W writing a class;

M writing a main method, including concepts such as static methods, parameters, and
arrays in the signature;

B a statement to create the object (‘new’);
M an assignment to a variable;
M the variable declaration, including variable type;

B a method call, using dot notation;

Preface to the instructor 3

B possibly a parameter list.
As a result, textbooks typically either

M have to work their way through this forbidding list, and only reach objects somewhere
around Chapter 4; or

W use a ‘Hello, world’-style program with a single static main method as the first exam-
ple, thus not creating any objects at all.

With Bluel, this is not a problem. A student can create an object and call its methods as
the very first activity! Because users can create and interact with objects directly, con-
cepts such as classes, objects, methods, and parameters can easily be discussed in a
concrete manner before looking at the first line of Java syntax. Instead of explaining more
about this here, we suggest that the curious reader dip into Chapter 1 — things will quickly
become clear then.

An iterative approach

Another important aspect of this book is that it follows an iterative style. In the comput-
ing education community, a well-known educational design pattern exists that states that
important concepts should be taught early and often.! It is very tempting for textbook
authors to try and say everything about a topic at the point where it is introduced. For
example, it is common, when introducing types, to give a full list of built-in data types, or
to discuss all available kinds of loop when introducing the concept of a loop.

These two approaches conflict: We cannot concentrate on discussing important concepts
first, and at the same time provide complete coverage of all topics encountered. Our expe-
rience with textbooks is that much of the detail is initially distracting, and has the effect
of drowning the important points, thus making them harder to grasp.

In this book we touch on all of the important topics several times, both within the same
chapter and across different chapters. Concepts are usually introduced at a level of detail
necessary for understanding and applying the task at hand. They are revisited later in a
different context, and understanding deepens as the reader continues through the chapters.-
This approach also helps to deal with the frequent occurrence of mutual dependences
between concepts.

Some teachers may not be familiar with an iterative approach. Looking at the first few
chapters, teachers used to a more sequential introduction will be surprised at the number
of concepts touched on this early. It may seem like a steep learning curve.

It is important to understand that this is not the end of the story. Students are not expected
to understand everything about these concepts immediately. Instead, these fundamental
concepts will be revisited again and again throughout the book, allowing students to get a
deeper and deeper understanding over time. Since their knowledge level changes as they
work their way forward, revisiting important topics later allows them to gain a deeper
understanding overall.

! The ‘Early Bird’ pattern, in J. Bergin: ‘Fourteen pedagogical patterns for teaching computer science’, Proceedings of the
Fifth European Conference on Pattern Languages of Programs (EuroPLop 2000), Irsee, Germany, July 2000.

Preface to the instructor

We have tried this approach with students many times. It seems that students have fewer
problems dealing with it than some long-time teachers. And remember: a steep learning
curve is not a problem as long as you ensure that your students can climb it!

No complete language coverage

Related to our iterative approach is the decision not to try to provide complete coverage
of the Java language within the book.

The main focus of this book is to convey object-oriented programming principles in gen-
eral, not Java language details in particular. Students studying with this book may be
working as software professionals for the next 30 or 40 years of their life — it is a fairly
safe bet that the majority of their work will not be in Java. Every serious textbook must of
course attempt to prepare them for something more fundamental than the language flavor
of the day.

On the other hand, many Java details are important for actually doing the practical work.
In this book we cover Java constructs in as much detail as is necessary to illustrate the
concepts at hand and implement the practical work. Some constructs specific to Java have
been deliberately left out of the discussion.

We are aware that some instructors will choose to cover some topics that we do not dis-
cuss in detail. That is expected and necessary. However, instead of trying to cover every
possible topic ourselves (and thus blowing the size of this book out to 1500 pages), we
deal with it using hooks. Hooks are pointers, often in the form of questions, that raise the
topic and give references to an appendix or outside material. These hooks ensure that a
relevant topic is brought up at an appropriate time, and leave it up to the reader or the
teacher to decide to what level of detail that topic should be covered. Thus hooks serve as
a reminder of the existence of the topic, and as a placeholder indicating a point in the
sequence where discussion can be inserted.

Individual teachers can decide to use the book as it is, following our suggested sequence,
or to branch out into sidetracks suggested by the hooks in the text.

Chapters also often include several questions suggesting discussion material related to the
topic, but not discussed in this book. We fully expect teachers to discuss some of these
questions in class, or students to research the answers as homework exercises.

Project-driven approach

The introduction of material in the book is project driven. The book discusses numerous
programming projects and provides many exercises. Instead of introducing a new con-
struct and then providing an exercise to apply this construct to solve a task, we first
provide a goal and a problem. Analyzing the problem at hand determines what kinds of
solutions we need. As a consequence, language constructs are introduced as they are
needed to solve the problems before us.

Early chapters provide at least two discussion examples. These are projects that are dis-
cussed in detail to illustrate the important concepts of each chapter. Using two very
different examples supports the iterative approach: each concept is revisited in a different
context after it is introduced.

Preface to the instructor 5

In designing this book we have tried to use a large number and wide variety of different
example projects. This will hopefully serve to capture the reader’s interest, but it also
helps to illustrate the variety of different contexts in which the concepts can be applied.
Finding good example projects is hard. We hope that our projects serve to give teachers
good starting points and many ideas for a wide variety of interesting assignments.

The implementation for all our projects is written very carefully, so that many peripheral
issues may be studied by reading the projects’ source code. We are strong believers in the
benefit of learning by reading and imitating good examples. For this to work, however,
one must make sure that the examples students read are well written and worth imitating.
We have tried to do this.

All projects are designed as open-ended problems. While one or more versions of each
problem are discussed in detail in the book, the projects are designed so that further exten-
sions and improvements can be done as student projects. Complete source code for all
projects is included. A list of projects discussed in this book is provided in the section, “List
of projects discussed in detail in this book”.

Concept sequence rather than language constructs

One other aspect that distinguishes this book from many others is that it is structured
along fundamental software development tasks and not necessarily according to the par-
ticular Java language constructs. One indicator of this is the chapter headings. In this
book you will not find many of the traditional chapter titles, such as ‘Primitive data
types’ or ‘Control structures’. Structuring by fundamental development tasks allows us to
give a much more general introduction that is not driven by intricacies of the particular
programming language utilized. We also believe that it is easier for students to follow the
motivation of the introduction, and that it makes much more interesting reading.

As a result of this approach, it is less straightforward to use the book as a reference book.
Introductory textbooks and reference books have different, partly competing, goals. To a
certain extent a book can try to be both, but compromises have to be made at certain
points. Our book is clearly designed as a textbook, and wherever a conflict occurred, the
textbook style took precedence over its use as a reference book.

We have, however, provided support for use as a reference book by listing the Java
constructs introduced in each chapter in the chapter introduction.

Chapter sequence

Chapter 1 deals with the most fundamental concepts of object orientation: objects, classes.
and methods. It gives a solid, hands-on introduction to these concepts without going into
the details of Java syntax. It also gives a first look at some source code. We do this by
using an example of graphical shapes that can be interactively drawn, and a second exam-
ple of a simple laboratory class enrollment system.

Chapter 2 opens up class definitions and investigates how Java source code is written to
create behavior of objects. We discuss how to define fields and implement methods.
Here, we also introduce the first types of statement. The main example is an implemen-
tation of a ticket machine. We also look back to the laboratory class example from
Chapter 1 to investigate that a bit further.

Preface to the instructor

Chapter 3 then enlarges the picture to discuss interaction of multiple objects. We see how
objects can collaborate by invoking each other’s methods to perform a common task. We
also discuss how one object can create other objects. A digital alarm clock display is dis-
cussed that uses two number display objects to show hours and minutes. As a second
major example, we examine a simulation of an email system in which messages can be
sent between mail clients.

In Chapter 4 we continue by building more extensive structures of objects. Most impor-
tantly, we start using collections of objects. We implement an electronic notebook and an
auction system to introduce collections. At the same time, we discuss iteration over col-
lections, and have a first look at loops. The first collection being used is an ArrayList.
In the second half of the chapter we introduce arrays as a special form of a collection, and
the for loop as another form of a loop. We discuss an implementation of a web-log ana-
lyzer as an example for array use.

Chapter 5 deals with libraries and interfaces. We introduce the Java standard library and
discuss some important library classes. More importantly, we explain how to read and
understand the library documentation. The importance of writing documentation in soft-
ware development projects is discussed, and we end by practicing how to write suitable
documentation for our own classes. Random, Set, and Map are examples of classes that
we encounter in this chapter. We implement an Eliza-like dialog system and a graphical
simulation of a bouncing ball to apply these classes.

Chapter 6, titled Well-behaved objects, deals with a whole group of issues connected to
producing correct, understandable, and maintainable classes. It covers issues ranging
from writing clear, understandable code — including style and commenting — to testing
and debugging. Test strategies are introduced, and a number of debugging methods are
discussed in detail. We use an example of a diary for appointment scheduling and an
implementation of an electronic calculator to discuss these topics.

In Chapter 7 we discuss more formally the issues of dividing a problem domain into classes
for implementation. We introduce issues of designing classes well, including concepts such
as responsibility-driven design, coupling, cohesion, and refactoring. An interactive, text-
based adventure game (World of Zuul) is used for this discussion. We go through several
iterations of improving the internal class structure of the game and extending its functional-
ity, and end with a long list of proposals for extensions that may be done as student projects.

Chapters 8 and 9 introduce inheritance and polymorphism with many of the related
detailed issues. We discuss a simple database of CDs and videos to illustrate the concepts.
Issues of code inheritance, subtyping, polymorphic method calls, and overriding are dis-
cussed in detail.

In Chapter 10 we implement a predator/prey simulation. This serves to discuss additional
abstraction mechanisms based on inheritance, namely interfaces and abstract classes.

Chapter 11 introduces two new examples: an image viewer and a sound player. Both
examples serve to discuss how to build graphical user interfaces (GUISs).

Chapter 12 then picks up the difficult issue of how to deal with errors. Several possible
problems and solutions are discussed, and Java’s exception-handling mechanism is
discussed in detail. We extend and improve an address book application to illustrate
the concepts. Input/output is used as an error-prone case study.

Preface to the instructor 7

Chapter 13 steps back to discuss in more detail the next level of abstraction: How to
structure a vaguely described problem into classes and methods. In previous chapters we
have assumed that large parts of the application structure already exist, and we have made
improvements. Now it is time to discuss how we can get started from a clean slate. This
involves detailed discussion of what the classes should be that implement our application,
how they interact, and how responsibilities should be distributed. We use class—responsi-
bilities—collaborators (CRC) cards to approach this problem, while designing a cinema
booking system.

In Chapter 14 we try to bring everything together and integrate many topics from the pre-
vious chapters of the book. It is a complete case study, starting with the application
design, through design of the class interfaces, down to discussing many important func-
tional and non-functional characteristics and implementation details. Topics discussed in
earlier chapters (such as reliability, data structures, class design, testing, and extendibil-
ity) are applied again in a new context.

Third Edition

This is the third edition of this book. Several things have been changed from previous edi-
tions. The second edition saw the introduction of JUnit and a chapter on GUI programming.
In this edition, the most obvious change is the use of Java 5 as the implementation lan-
guage. Java 5 introduced new language constructs, such as generic classes and enumeration
types, and almost all of our code examples have been changed to make use of these new
features. The discussions in the text have, of course, also been rewritten to take account of
this. Overall, however, the concept and style of this book remain unchanged.

Feedback we received from readers of prior editions was overwhelmingly positive, and many
people have helped in making this book better by sending in comments and suggestions,
finding errors and telling us about them, contributing material to the book’s web site, con-
tributing to the discussions on the mailing list, or translating the book into foreign languages.

Overall, however, the book seems to be ‘working.” So this third edition is an attempt at
improvements in the same style, rather than a radical change.

Additional material

This book includes all projects used as discussion examples and exercises on a CD. The
CD also includes the Java development environment (JDK) and BlueJ for various oper-
ating systems.

There is a support web site for this book at
http://www.bluej.org/objects-first

On this web site, updates to the examples can be found, and additional material is provided.
For instance, the style guide used for all examples in this book is available on the web site
in electronic form, so that instructors can modify it to meet their own requirements.

The web site also includes a password-protected, teacher-only section that provides addi-
tional material.

A set of slides to teach a course with this book is also provided.

Preface to the instructor

Discussion groups

The authors maintain two email discussion groups for the purpose of facilitating exchange
of ideas and mutual support for and by readers of this book and other BlueJ users.

The first list, bluej-discuss, is public (anyone can subscribe) and has a public archive. To
join, or to read the archives, go to

http://lists.bluej .org/mailman/listinfo/bluej-discuss

The second list, objects-first, is a closed list for teachers only. It can be used to discuss
solutions, teaching tips, exams, and other teaching-related issues. For instructions to join,
please look at the book’s web site (see above).

Many people have contributed in many different ways to this book and made its creation
possible.

First, and most importantly, John Rosenberg must be mentioned. John is now a Deputy
Vice-Chancellor at Deakin University, Australia. It is by mere coincidence of circum-
stance that John is not one of the authors of this book. He was one of the driving forces in
the development of BlueJ and the ideas and pedagogy behind it from the very beginning,
and we talked about the writing of this book for several years. Much of the material in
this book was developed in discussions with John. Simply the fact that there are only
twenty-four hours in a day, too many of which were already taken up with too much other
work, prevented him from actually writing this book. John has contributed to this text
continuously while it was being written and helped improve it in many ways. We have
appreciated his friendship and collaboration immensely.

Several other people have helped to make BlueJ what it is: Bruce Quig, Davin McCall,
and Andrew Patterson in Australia, and Ian Utting and Poul Henriksen in England. All
have worked on BlueJ for many years, improving and extending the design and imple-
mentation in addition to their other work commitments. Without their work, BlueJ would
never have achieved the quality and popularity it has today, and this book might never
have been written.

Another important contribution that made the creation of BlueJ and this book possible -
was very generous support from Sun Microsystems. Emil Sarpa, working for Sun in Palo
Alto, CA, has believed in the BluelJ project from the very beginning. His support and
amazingly unbureaucratic way of cooperation has helped us immensely along the way.

Everyone at Pearson Education worked really hard to fit the production of this book into
a very tight schedule, and accommodated many of our idiosyncratic ways. Thanks to Kate
Brewin for her determined support for this project through the first editions, and to
Simon Plumtree who brought this edition to the light of day. Thanks also to the rest of the
team, which includes Bridget Allen, Kevin Ancient, Tina Cadle-Bowman, Tim Parker,
Veronique Seguin, Fiona Sharples, and Owen Knight. We are bound to have forgotten
someone, and we apologize if we have.

The Pearson sales team also have done a terrific job in making this book visible, man-
aging to avert every author’s worst fear — that his book might go unnoticed.

Our reviewers also worked very hard on the manuscript, often at busy times of the year for
them, and we would like to express our appreciation to Michael Caspersen, Devdatt
Dubhashi, Khalid Mughal, and Richard Snow for their encouragement and constructive input.

Acknowledgements

Axel Schmolitzky, who produced the excellent German translation of this book, must
have been our most careful and scrupulous reader; he suggested a good number of possi-
ble improvements on sometimes very subtle points.

David would like to add his personal thanks to both staff and students of the Computer
Science Department at the University of Kent. The students who have taken the introduc-
tory OO course have always been a privilege to teach. They also provide the essential
stimulus and motivation that makes teaching so much fun. Without the valuable assistance
of colleagues and postgraduate supervisors, running classes would be impossible, and
Simon Thompson provides outstanding support in his role as Head of Department. Outside
university life, various people have supplied a wonderful recreational and social outlet to
prevent writing from taking over completely: thanks to my climbing friends, Chris Phillips
and Martin Stevens, who help keep me up in the air and Joe Rotchell, who helps keep my
feet on the ground.

Finally, I would like to thank my wife Helen, whose love is so special; and my children,
whose lives are so precious.

Michael would like to thank Andrew and Bruce for many hours of intense discussion.
Apart from the technical work that got done as a result of these, I enjoyed them
immensely. I like a good argument. John Rosenberg has been a mentor to me for many
years since the start of my academic career. Without his hospitality and support I would
have never made it to Australia, and without him as a PhD supervisor and colleague I
would never have achieved as much as I did in my work. It is a pleasure working with
him, and I owe him a lot. Thanks to Michael Caspersen, who is not only a good friend, but
has influenced my way of thinking about teaching during various workshops we have
given together. My colleagues in the software engineering group at the Marsk Institute in
Denmark — Bent Bruun Kristensen, Palle Nowack, Bo Nerregaard Jorgensen, Kasper
Hallenborg Pedersen, and Daniel May — have patiently put up with my missing every
deadline for every delivery possible while I was writing this book, and introduced me to
life in Denmark at the same time.

Finally, I would like to thank my wife Leah and my two little girls, Sophie and Feena. Many
times they had to put up with my long working hours at all times of day while I was writing
for this book. Their love gives me the strength to continue, and makes it all worthwhile.

Concept reviews

85 D

Integration of
BIueJ throughou

316 Chapter 11 % Bulding graphical user interfaces

To get a GUI on screen, the first thing we have o do is 10 create and display frame.

Code 11,1 shows a complete clas aready named aageViewar in yl:pu-lmn for

things to come) that shows This clasy is available in the book proj
imageviwerd-1 (the munbet sanda for vemion 0.1,

Exercise 14.1 Open the 1 project. (This wil become the basis of
Your own image viewer) Create an instance of class TaageViewor. Res:ze the
resuting frame (mako it larger). What do you observe aboul the piacement of the
taxtin the frame’

We shall now discuss the TaageV ewar class shown in Code 11.1 in some detail

The fis tre ics i that class e import statements o l classs i thepackages
Java. awt, wt.avent, and javax. swing.' We nced many of the classes in
thes packagos sl Swingsppictions ws et 40 e sal vy g st
packages completely in all our GUI programs

Lok {herestofthe class sbows very quickly that althe inireing s ' the
This method takes care of constructing the GUI. The class
S, oviagos gnly a call to this method. We have done this so tht il the P

is casy 1o find

do tis i ll our GUI cxamples

The class has one instance variable of type JFrame. This is used to hold the frame that
the image viewer wants (0 show on screcn.

Let us now take 8 closer look i the akoF rame method.
The first line in this method is

frame « new JFrame(*ImageViewer®);

This state new itin Iter use.

As a general principle you nw..u in parallel with studying the examples in this book.
ook at the the classes

we use maunm,mmu.-nmmmrmmmmmmmywmmm

Exsrcine 1.2 Find the documentation for class JFrame. What (s the purposs of
the parameter * Inag

A frame consists of three part: the ritle bar, an optional memu bar, and the content pane
(Figure 119 The cxact ppcaranc of e il bar depends o the underying operting
system. 1 fow

mmmmmmmmmummamam.wlmm To both, we

! The swing package really is in & package called avax (cnding with an ‘x"), not Java. The
reason for i

1.5 Data types 7

near the top. This s called the sig

mation abou the method in queston. The part between the parcatheses (int diatance)
is the information about the required parameter. For each parumeter, it defines a fype und
a name. The signature above states that the method requites one parameter of type int
‘named diviance. The name gives w hint shout the meaning of the data expected.

Data types

A type specifies what kind of data can be passed to a parsmeter. The lyyt int significs
‘whole mumbers (aiso caled ‘integer numbers, hence the abbreviation in

In the example above, the signature of the moveHorizontal method states that, before
the can exccute, we need (o supply 8 whole number specifying the distance to
move. The data entry field shown in Figure 1.4 then lets you enter that number.

In the examples so fur, the uﬂly data type we have sevn has ben int. The parameters of the

move methods and method are ll of that type.

Closer inspection of the uu.em Popup menu shows that the method entries in the menu
include the parameter types. If » method has o parameter, the method name is followed
by an empty st of parcntheses. If it has & parameter, the type of that parameer is dis-
played. In the list of methods for a circle you will sec one method with a dificrent par-
ameter type: the changeCoLor method has 4 parameter of type String,

The String type indicacs tha section o text (for cxample wond o 8 snence) s

e lm type
rea

“The method call dialog also includes a section of text called a camment above the method

signature. Commens are included 1o provide information to the (human) reader and are

described fin Chapter 2. The comment of the changeColor method describes what color

names the system knows sbout

Enarcius 14 invko (e changeColor mehod on one of yur cirle biecs and
enter the String “r

Elon 18 Thk & 4 vy sopls . and not many Golors am supported
what happens when you specy a color that is not known.

Exorcise 1.6 invoke th cn.wewlar Terod, e ine cokor i i s
‘ameter fiect without the auotes. Wht

Prusan
ata vakuo of type SErANG. If you type grmen msted of “grew” you wil got an error
g bl

\ Pitfalls Hichiiont oo

signaturcs and field declarations, because they can look quite similar. We can tell that
90tPrice s a method and not a field because it s followed by & pair of parentheses: *(*

g%

Note, too, thatthere is 5o semicolon ai the end of the signature.

mmewn.mmmmmw.numm 1t ahuays enclosed
). Method

thpdes

ac staemets ot el what hppens i 1 o whe ot i <ot v
our example sbove, the method body contains a single statcmen, but we shall sce
very soon where the method body consiss of many fines of both declarations

and statcments.

Any set of declarations and statements between & pair of matching curly brackets is
known s a block. So the body fthe Ticke tiachine classsnd the bodie of allthe

‘methods within the class are bloc

There are at least two significant differences between the signatures
TicketMachine constructor and the getPrice method:

public TicketMachine(int ticketCost)

public tnt getPrice()

of the

fromm the more f mthe
- Dol nclode

26 Accessor methods 29 25 Assignment 27

Code 2.5
The getPrice pubLLc cides TicketMachine
mothod Fs s i e

Pields o, e .gmammh

Comtructor omnd ekt i,

* eturr the price of a ticket :

public int getPrice()

«

return price
¥
)

[Concepr: IR header anda body, Here is for getPrice:

e variable scope is variable {jférime. The lifetime of a parameter is lim-
P dvow * Return the price of a ticket. e o sngh i o s s e s b completed iy task, the
kol =l formal parameters disappear and the values they held are lost. In other words, when

public int getPrice() constructor has finished exccuting, the whole Conmructo space (s Figure 24 i
The first three lines are 4 comment describing what the method does. The fourth line is removed, ith the parameter variabies held within
also known us the method signature. It s important to distinguish between method

In contrast, the lifetime of a ficld s the same as the lifetime of the object to which
it belongs. It follows that if we want to remember the cost of tickets held in the
ticketCost parameter, we must store the value somewhere more persistent — that is, in
the prce field

Exerisn 2,96 Towhat class doos the folowing consiructor bolong?

public Student(String name)
Exsroise 2.47 How many parameters does the following coristructor have and
what oro thoir lypes?

public Book(String title, double price)

Exercise 218 Can you guess what types some of tha Book cisss' fleids might
e Can you assurms anything about the names of s fields?

Assignment

In the previous section, we noted the need 1o store the short-lived value of parameter
into somewhere more permancat - a field. In order to do this, the body of the con
contains the following assignment staiement

price = ticketCost;

