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PREFACE

During 1963 and 1965, I had the opportunity of opening a
seminar at Kirin University for the comrades who were engaged
in the research work of quantum chemistry in universities and
other institutes amd for those who were desirous of making a
deeper study in this field. The topics I selected for discussion in
the group theory included the continuous, the symmetrie, the
point and the space groups as well as their applications in atoms,
molecules and solids. T gave lectures to the participating members
about twelve hours a week. I also invited Professors Chou Shiao-
chein and Wu Shi-shou to give a few interesting topics on the
nuclear shell model and the quantum field theories respectively.
Besides, arrangements were made for several of the members to
report some selected topics, such as the ligand field and the
molecular orbital theories ... ete. Through the seminar, it was
my purpose, on the one hand, to raise the academic level of the
participants and, on the other hand, to provide them more skill
in solving some important problems in quantum chemistry with
the powerful tool of the group theory. Through the seminar I
collaborated with my co-workers to do the research work, with
the result that the manuseript of the present book was produced.
The main contribution of -this book may be ascribed to three
aspects: to discuss the V-, W- and X- coefficients of the point
group on the standardized irreducible representation bases; to
define successfully the partition coupling coefficients from group
80 (3) to group O; to build up the molecular shell model. Other
particulars about the content may be found in the introduction
itself. Tt should be pointed out that although I took the
initiative to offer the topies contained in this book and have
solved some problems hitherto considered as unsolvable, the
whole work was done through the collective efforts of my co-



workers and myself. But for their collaboration, the present
book would not have been brought into existence.

Under the title A Study of the Theory of Ligand Field,
the major part of this treatise had been presented to the 1966
Summer Physies Colloquium of the Peking Symposium. The
authers will appreciate it .very much if readers of the bovk
would point out the short-comings or even errors in its content
so that improvements will be made when it is re-printed.

I have to thank my collaborators, Sun Chia-chung, Yan
Guo-sen and Tai Shu-san. for their help in checking the
manuseript and reading the proofs.

Tanc Av-CHIN -
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CHAPTER 1

INTRODUCTION

It has been more than forty years since the ligand field
theory made its appearance. It was established in 1931, when
Bethe’s crystal field was proposed, although, of course, great
contributions in this respect have been made by other authors
later. The theory, up to now, found wider applications both
in chemistry and in physies. The publication of Racah’s four
papers in the Physical Review under the title Theory of Complex
Spectra had a great effect on the ligand field theory as it had
affected the nuclear and elementary particle theories. As a
result, Tanabe and Sugano, in their attempts to improve the
original erystal field, proposed the strong field scheme and,
later on, Griffith presented a particular version of the irreducible
tensor method for molecular symmetry group. In recent years,
there have been some more important and valuable works on the
ligand field theory.

Since the point groups are not only of the finite groups
but also of the subgroups of continuous groups. The continuous
groups, as a consequence, may be introduced in the ligand field
theory. Thus, we do not confine ourselves in this book to the
applications to the point groups in the ligand field theory but
will include the continuous groups in our discussions so as to
present a systematic and unified treatment. The discussions
will be carried out consecutively according to the kinds of the
groups, namely, the point, the three-dimensional rotation and
the continuous groups in the group chain. If we want to study
the ligand field theory in a systematic and unified way, the
question to be solved at the beginning is to find out the
standardization of the irreducible representation bases of the
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point groups for a better understanding of how the bases are to
he transformed under the actions both of spatial transformation
and of time reversal. Therefore, we can attain our aim of making
a correct choice of phase factors, and this choice will have an
important effeet on our later discussions. This is the content we
shall deal with in detail in Chapter 2, in which the irreducible
representations of point groups are classified into the three
different types of A, B and C. We shall find that the stand-
ardized irreducible bases are directly related to the symmetry
properties of the V-, W- and X-coefficients of the point groups
presented in Chapter 3. Moreover, it often happens that a
certain irreducible representation I of the point group may
occur more than once in the reduection of the direct produet of
I': XTs, and, accordingly, the various kinds of coefficients
mentioned above should be further modified. In Chapter 3,
the V-, W- and X- coefficients defined will not be the same for
different types of representations such as the types A, B and
C. In the ligand field theory, the group chains, as is well
known, proposed by Racah for studying the configurations d"
and f* in atomic theory can be generalized into the following
forms:

SU(5) ©80(5) D8O(3) D0 2> D, or D, (a)

SU(T) D S0(7) DG, DO80(3) D0>D, or D, (b)
For the purpese of applying the achievements of atomic theory
to the ligand field theory, we have dealt with the partition
coupling coefficient from SO(3) to O so as to link up the
continuous and the finite groups. This coefficient and that
from O to Ds or D, will be discussed in Chapter 4. In Chapter
5, the Wigner-Eckart theorem will be introduced in the evalua-
tion of matrix elements in the ligand field theory rather than
its most familiar application to atomiec theory with respect to
group SO(8). The most interesting discussion will be the
building up of the molecular shell model in Chapter 6, in
which we shall analyze how many group chains are to be settled
under the group SU(10) or SU(14) for proposing the calcula-
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tion schemes such as the strong, the weak and the inter-
mediate field schemes. Furthermore, we shall present a piece
of evidence of how the molecular orbitals may constitute the
irreducible bases for either group chain (a) or (b), and, as
a consequence, of how the restriction of these group chains with
the atomic orbitals as their irreducible bases are to be removed.
Though we merely set forth some new concepts and their
results, the readers may glance over this chapter, if they have
already had the knowledge of the Lie algebra and dts represen-
tations. In Chapter 7, we shall «deal with the evaluation of
various kinds of matrix elements of several important group
chains. It is especially noteworthy that the partition coupling
coefficients from SO(3) to O will play an important role in the
evaluations, since they bridge the gap between the results of the
continuous and the finite groups.

For practical purposes, various kinds of tables are provided
in Part II of this book. ‘ :



CHAPTER 2

THE STANDARDIZATION OF
IRREDUCIBLE BASES

As is well known, the eigenfunctions for a molecule are the
bases for irreducible representations of the point group to which
the molecule belongs. The question of how to standardize the
irreducible bases is a matter of importance in the application of
the irreducible tensor method. The question to be solved may
be related, on one hand, to gaining an understanding of the
spatail transformation property of irreducible bases under the
action of group elements and, on the other hand, to dealing with
how the same bases would be transformed under the time reversal.
In this chapter, we shall give a systematic discussion of the
standardization of irreducible bases of point groups whose repre-
sentations are classified into three different types referred to as
A, B and C. Since the standardization of irreducible bases of
point groups may be in direct relation to those of group SO(3),
it will be appropriate to give, for the moment, a brief review of
some properties of the irreducible bases for group S0O(3).

2.1 The Standardization of Irreducible
~ Bases of Group SO(3)

Let us consider a physical system of spherical symmetry. Tt
is clear that any rotation operator may commute with the Hamil-
tonian. We shall prove that the eigenfunctions for a given ei-
genvalue may constitute the bases for irreducible representations
of group 80(3).

Now let us start our diseussion with the more general case.
Suppose that a group {E} consists of all spatial transformations
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which commute with the Hamiltonian of a physieal system, op-
eration of the group element B upon the wave equation,

Hot = Brgt
gives
PHy! = E“Prdi
The above expression can be written as
P:HP:'(Prgt) = E*(Prdf) - @n

where P is an operator corresponding to the group element E.
Since Pr commutes with the Hamiltonian H,

P:HP;' =

we have, from Eq. (2.1),

H(Ppdt) = E“(Prd?) (2.2)
This equation states that, if $% is a solution, the result of per-
forming the operator indicated by Pr will yield a function Pryf
which is also a solution of the wave equation., Up to the present,
it has been more or less informed that for any eigenvalue E*,
there js one appropriate eigenfunction ¢%.  This is often true,
but there have been also many cases in which several eigenfune-
tions ¥, Pr -+, % give the same eigenvalue E#. It is clear
that an eigenfunction Pypp* belonging to eigenvalue E* is ex-
pressed as a linear combination of a set of eigenfunctions

PR(I):"(rl;rZ; tt rn) = Z D;;(R)(P;'L(rl’rh e 7rn) (23)
i

where Df;(R) is dependent on E¥, ¢f, f and R, but not on the
coordinates of particles. Bq. (2.3) states that the set of eigen-
functions {¢}} spans an invariant subspace for the group {E}.

We shall show that the set of eigenfunctions {¢j} may
form the basis for a representation of group {E}. Let us con-
sider a general vector with position r. On applying a certain
rotation R, this vector will be transformed to a new positionr’,
ie. ¥ = Rr. Tt is clear that the value of the rotated function,
P.y%, at the point (¥, Ts ..., Is) must be equal to that of the
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unrotated function, ¥4, at the point (B7'r,, Bty ..., B7'T.),
1.e.
Pepi(ry, 05,00, 0,) = $i(B7'r,, R7'r5, - -+, R7'r,)

For some other operation, Ps, acting on Py, we have

PPrpi(r,rs, -1 1)
= PR(p?(S—lrl;S—_er; ctty S_‘rﬂ)

= Z Di(R)PE(8™ry, 87y, - -+, 87'r,)
i

= 3 DERIDE(S)PLCE, 1s, -+, 1)
ik

= 2 (DO DR udi(xs, 1,07, 7,) (24)
k
Since B and S are members of [R}, there must be an element
SR, the effect of which acting on one of the functions in the
set can be expressed as follows

PSR‘I’:'L(rU rZ: tty rn)
= > D*(SR)pdi(xy, Xyy -, 1)
k

= Z (D”(S>Dﬂ(R))kx¢"I:(rl7 L PR rn) (2-5)
k

Since 3% are linearly independent, we know that if two sym-
metry operators of the group {E}, say 8 and R, combine to
give produet SE, the matrices corresponding to S and B must
multiply together to give the matrix corresponding to SE
D#(S)D*(R) == D*(SR) (2.6)
This expression indicates that {D*(R)} form a representa-
tien of group {R} and the set of eigenfunctions {¢%} with the
same eigenvalue E* eonstitutes a basis for the representation
{D*(R)}. When there is no accidental-degeneration, the re-
presentation is irreducible.
It will be appropriate to give, at this stage, a brief discus-
sion of the standardization of the basis for the group SO(3).
It is not necessary that the readers have a very extensive know-
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ledge of group theory to follow the development in this section,
but the information given here is essential.

1. The Standardization of Irreducible Bases under Spatial

Transformation

As is well known, the 2§ + 1 angular momentum eigenvectors
form a basis for an irreducible representation j of SO (3). Under
the action of angular momentum operators J. and J. £ 14J,, the
eigen veetors {¢},} can be transformed in the following manner

J. i, = moi,
2D, =/ GFo)Gtm+ Dy (2D

where h /27 is taken as the unit of angular momentum. Eq. (2.7)
is referred to as the standardization condition for the irreducible
bases of 80(3).

Alternatively, when operating a rotation operator Pr on
{¢h}, they may be transformed in the following way

Pedi, = D Dhn(RIDE (2.8)

where B =(a, B, v) is used to denote the Euler angles which, in
this chapter, deseribe the rotation of vector in a three-dimensional
space. For any element B=(a, 8, v) of 8O(3) to which a rota-
tion operator Py may correspond, we may rewrite Eq. (2.8)
in the form

P(a’ﬁ"r)(l"fn = Z DZn’m(a’ .37 Y)szn’ . (29)
Wigner has obtained the following standardized form of
Di,. (a, B, ) by the use of the standardization condition (2.7)

Diﬂ’m(“;ﬁ;?’)
_ _ VG =m)1G+m)1(G—m)1G +m )
—Zk:( Dkk!(j+m’——k)!(j—m——k)1(k—-m’+m)1

itm!—m—2k 2k+m—m’
. gmine <COS%>ZJ " (sir%) emimr (210)

It Di,, (B, v) in Bq (29) takes the standardized form,
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