

Worldwide Trends in Green Chemistry Education

Edited by Vânia Gomes Zuin and Liliana Mammino

Worldwide Trends in Green Chemistry Education

Edited by

Vânia Gomes Zuin

Federal University of São Carlos, São Paulo, Brazil Email: vaniaz@ufscar.br

Liliana Mammino

University of Venda, Thohoyandou, South Africa Email: sasdestria@yahoo.com

Print ISBN: 978-1-84973-949-8 PDF eISBN: 978-1-78262-194-2

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2015

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

The authors have sought to locate owners of all reproduced material not in their own possession and trust that no copyrights have been inadvertently infringed.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

Visit our website at www.rsc.org/books

Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY

Worldwide Trends in Green Chemistry Education

Foreword

Green Chemistry Education: Worldwide Trends Amidst Changing Times

The time is right to draw the attention of chemists, educators, and others to the global status of green chemistry education. Timely, because of the mismatch between the everyday practice of chemistry teachers at the secondary and post-secondary level and high profile interrelated global initiatives that are guiding scientific and public sustainability discourse. Timely also, because of the opportunity presented to transform that educational practice, to take green and sustainable chemistry out of the aside boxes in textbooks and the margins of curriculum, and infuse it through the body of knowledge included in student learning outcomes and assessments.

While relatively little change is evident over the past several decades in curricular emphases in chemistry, interdisciplinary science is pressing forward with two important initiatives that should push scientific understandings of sustainability onto the agenda of formal and informal science educators. The first initiative rewrites our understanding of the times we live in on our planet, by moving the clock ahead on the geological time scale. An International Union of Geological Sciences blue-ribbon working group of the Sub-commission on Quaternary Stratigraphy is expected to report by 2016 on whether sufficient scientific evidence is present to formally determine that we have moved from the relatively stable interglacial Holocene Epoch to the Anthropocene Epoch [Greek 'anthropo-' (human), and '-cene' (new)], on the geological time scale. Many expect the determination to be that we are in the Anthropocene already, an epoch on the geological time scale that is defined by the human imprint. A leading candidate for the beginning of this epoch is the industrial revolution, when we observe the beginning of steep and steady rises in numerous chemical parameters related to our planetary life support

Worldwide Trends in Green Chemistry Education Edited by Vânia Gomes Zuin and Liliana Mammino © The Royal Society of Chemistry 2015 Published by the Royal Society of Chemistry, www.rsc.org vi Foreword

systems. A second, interconnected initiative is the systematic attempt to define and quantify 'planetary boundaries', the state of earth system parameters that define a safe operating space for humanity.

Is there a community of research and practice that is better equipped to give leadership in connecting these two global interdisciplinary scientific initiatives to chemistry educational practice than the green chemistry community? Green chemistry philosophy and principles, formally articulated two decades ago, have been put forward out of concern that the everyday practice of chemistry be fundamentally transformed so as to start with sustainability and safety considerations. For green chemistry to take firmer hold, the next generation of educators, scientists, and citizens needs to own the philosophy and embed it into practice. To move ahead we need to understand where we are, and this volume presents an important snapshot of trends in world-wide green chemistry education.

Contributions to this title cover a wide range of green chemistry education initiatives on different continents, and include descriptions of formal and informal learning environments at secondary, post-secondary, and tertiary levels. Green chemistry education is appropriately situated relative to global sustainability education initiatives such as the Decade of Education for Sustainable Development, which ends the year this title is published. Connections are made to disciplines such as toxicology, and the crucial and often neglected area of assessment receives attention, with presentation of metrics for the 'greenness' of chemistry teaching.

The contributions in this book provide an important global snapshot of the progress being made in greening chemistry education practice, and point the way toward the important steps that are still needed to make mainstream chemistry education more relevant to the future of our planet.

> Peter Mahaffy The King's University, Alberta, Canada

Preface

Green chemistry education can be considered one of the hottest themes in our time. As is well known, green chemistry aims at the design, production and use of substances that are non-hazardous and at the design and use of environmentally benign production processes, in the perspective of sustainable development. This constitutes one of the most innovative and challenging tasks worldwide. Green chemistry education aims at incorporating information about green chemistry into chemical education, thus being called to design suitable options for all the broad educational areas—curriculum development, teaching, learning and outreach—and their specific components, from in-class activities to laboratory experiments to the dissemination of information to the public. A major objective of green chemistry education is to foster sustainable scientific literacy and to develop the corresponding skills among the present and future generations.

With this book, we aim at considering key issues of green chemistry education through the presentation of research, practices and theoretical reflections in different contexts, by educators from different countries and continents, *i.e.*, Austria, Brazil, Canada, England, Germany, Israel, Malaysia, Portugal, Russia, South Africa, Spain, Thailand and the USA. Our intention is that of offering a panorama of approaches and highlighting the connections between the general objectives of green chemistry education and the design of pedagogical options at different academic and school levels, apt for the characteristics of each individual experience and simultaneously interesting for other contexts. Presenting concrete didactic activities from different realities gives the opportunity to consider a variety of diverse possibilities for the incorporation of green chemistry education into chemical education. The book includes analyses of concrete experiences from the educational point of view, as well as general theoretical reflections on the approaches and on their suitability to promote the desired types of awareness in the young

viii

generations, keeping in mind the importance of social and environmental sustainability (nowadays and in the future) and the role that Chemistry can play to promote sustainable development.

The first part of the book considers the significance of green chemistry, green chemistry education, sustainable development, education for sustainable development, and other crucial issues, and a variety of corresponding approaches. This is followed by the presentation of a number of current initiatives in, or designed for, secondary school level. The attention given to the teaching of the green chemistry and sustainability concepts at basic education level is presently inadequate, and this needs to change. Teacher training courses and other training initiatives constitute an excellent opportunity to raise the profile of secondary school green chemistry education, and can conveniently incorporate experiences from the undergraduate and postgraduate university levels, with suitable adaptations. We believe that, by presenting a panoramic of challenges and possible responses and offering an updated insight into the most recent trends in green chemistry education worldwide, this book may constitute a valuable resource not only for chemical educators specifically interested in green chemistry education, but also for scientists, students, professionals, industrialists and policy-makers. We really hope that the readers will enjoy the direct contact with the experiences presented.

We wish to express our sincere gratitude to Merlin Fox, Alice Toby-Brant, Rowan Frame and Marisa Sartori for their fruitful cooperation and dedicated efforts in supporting the preparation of this book.

Vânia Zuin and Liliana Mammino

Contents

Chapter 1	The Interface between Provision of Information and Behaviour Patterns	1
	Liliana Mammino	
	1.1 Introduction	1
	1.2 Green Chemistry Perspectives in a Process	
	Technology Course	3
	1.3 Relating Ethics and Chemistry with	
	Secondary School Pupils	4
	1.4 From Observations to Design: The Route to	
	Effective Educational Approaches	6
	1.4.1 Observation, Reflection and Design	6
	1.4.2 The Selection of Transport	7
	1.4.3 The Use of Air Conditioning	8
	1.4.4 The Attitude Towards Trees	9
	1.4.5 The Attitude Towards Saving	10
	1.4.6 The Attitude Towards Garbage Disposal	11
	1.4.7 The Handling of Substances and Materials	11
	1.4.8 Relating Individual/Local and Global	
	Perspectives	12
	1.4.9 Considering 'Protocols' Critically	12
	1.5 Some Key Educational Features	13
	1.6 The Issue of Ethics	14
	1.7 Discussion and Conclusions	14
	References	15

Worldwide Trends in Green Chemistry Education Edited by Vânia Gomes Zuin and Liliana Mammino © The Royal Society of Chemistry 2015 Published by the Royal Society of Chemistry, www.rsc.org

Chapter 2	Education for Sustainable Development and Chemistry Education Franz Rauch	16
	2.1 Sustainable Development2.2 Education for Sustainable Development:	16
	A Socio-Political Balancing Aet 2.2.1 The Role of Chemistry for Education	18
	on Sustainability 2.2.2 Basic Models of Approaching Sustainability Issues in Chemistry Education	19 20
	2.3 Conclusion and Outlook	23
	References	23
Chapter 3	Green Chemistry Education in Brazil: Contemporary Tendencies and Reflections at Secondary School Level Vânia Gomes Zuin and Carlos Alberto Marques	27
	3.1 Introduction	27
	3.2 Sustainability and Development: The Risks in Chemic Activities and How the Area has Dealt with This Issue3.3 Considerations About Green Chemistry in Brazil:	al 29
	From Quick Receptiveness to Strategic Future 3.4 Academic–Scientific Work on Green Chemistry	31
	Education in Brazil 3.5 Methodological Aspects of the Survey and	34
	Analysis of Scientific Research	35
	3.6 Final Considerations	40
	References and Notes	41
Chapter 4	Learning about Sustainable Development in Socio-Scientific Issues-Based Chemistry Lessons on Fuels and Bioplastics Rachel Mamlok-Naaman, Dvora Katchevich, Malka Yayon, Mareike Burmeister, Timo Feierabend, and Ingo Eilks	45
	4.1 Introduction4.2 Socio-Scientific Issues of Sustainable	45
	Development and Chemistry Teaching	16
	4.3 Issues of Sustainable Development in the	46
	SSI-Based Chemistry Classroom 4.3.1 Teaching and Learning on Traditional	48
	and Alternative Fuels 4.3.2 Teaching and Learning on Traditional	49
	and Alternative Plastics	52

Contents		XI
	4.4 Effects on the Chemistry Classroom 4.5 Conclusions Acknowledgement References	56 57 58 59
Chapter 5	Collaborative Development of a High School Green Chemistry Curriculum in Thailand Kenneth M. Doxsee	61
	 5.1 Background 5.2 Introduction 5.3 Distance Learning in Green Chemistry 5.4 Assumption College, Thonburi 5.5 Next Steps 5.6 Lessons Learned 5.6.1 Loss of Meaning during Translation 5.6.2 Differences in Teaching Methods 5.6.3 Involve Stakeholders 5.6.4 Be Realistic Acknowledgements References and Notes 	61 63 64 68 71 71 72 72 73 73
Chapter 6	On the Development of Non-formal Learning Environments for Secondary School Students Focusing on Sustainability and Green Chemistry Nicole Garner, Johannes Huwer, Antje Siol, Rolf Hempelmann, and Ingo Eilks	76
Chapter 6	 Environments for Secondary School Students Focusing on Sustainability and Green Chemistry Nicole Garner, Johannes Huwer, Antje Siol, Rolf Hempelmann, and Ingo Eilks 6.1 Introduction 6.2 Education for Sustainable Development and Chemistry Education 	
Chapter 6	 Environments for Secondary School Students Focusing on Sustainability and Green Chemistry Nicole Garner, Johannes Huwer, Antje Siol, Rolf Hempelmann, and Ingo Eilks 6.1 Introduction 6.2 Education for Sustainable Development and Chemistry Education 6.3 Non-formal Learning Environments as Catalysts for Innovation 6.4 Non-formal Learning on Sustainability and 	76 77 79
Chapter 6	 Environments for Secondary School Students Focusing on Sustainability and Green Chemistry Nicole Garner, Johannes Huwer, Antje Siol, Rolf Hempelmann, and Ingo Eilks 6.1 Introduction 6.2 Education for Sustainable Development and Chemistry Education 6.3 Non-formal Learning Environments as Catalysts for Innovation 6.4 Non-formal Learning on Sustainability and Green Chemistry 6.4.1 The Framework 6.4.2 Design of the Formal/Non-formal 	76 77 79 80
Chapter 6	Environments for Secondary School Students Focusing on Sustainability and Green Chemistry Nicole Garner, Johannes Huwer, Antje Siol, Rolf Hempelmann, and Ingo Eilks 6.1 Introduction 6.2 Education for Sustainable Development and Chemistry Education 6.3 Non-formal Learning Environments as Catalysts for Innovation 6.4 Non-formal Learning on Sustainability and Green Chemistry 6.4.1 The Framework 6.4.2 Design of the Formal/Non-formal Learning Environments 6.4.3 One Example in Practice: Natural	76 77 79 80 80
Chapter 6	 Environments for Secondary School Students Focusing on Sustainability and Green Chemistry Nicole Garner, Johannes Huwer, Antje Siol, Rolf Hempelmann, and Ingo Eilks 6.1 Introduction 6.2 Education for Sustainable Development and Chemistry Education 6.3 Non-formal Learning Environments as Catalysts for Innovation 6.4 Non-formal Learning on Sustainability and Green Chemistry 6.4.1 The Framework 6.4.2 Design of the Formal/Non-formal Learning Environments 6.4.3 One Example in Practice: Natural Vanilla or Synthetic Vanillin? 	76 77 79 80 80 81
Chapter 6	Environments for Secondary School Students Focusing on Sustainability and Green Chemistry Nicole Garner, Johannes Huwer, Antje Siol, Rolf Hempelmann, and Ingo Eilks 6.1 Introduction 6.2 Education for Sustainable Development and Chemistry Education 6.3 Non-formal Learning Environments as Catalysts for Innovation 6.4 Non-formal Learning on Sustainability and Green Chemistry 6.4.1 The Framework 6.4.2 Design of the Formal/Non-formal Learning Environments 6.4.3 One Example in Practice: Natural	76 77 79 80 80

		Contents
Chapter	7 Green Catalysts for Producing Liquid Fuels from Lignocellulosic Biomass Dequan Xiao and Evan S. Beach	93
	 7.1 Introduction 7.2 Biomass Polymers 7.3 Three Paths for Biomass Conversion 7.3.1 Solid → Gas → Liquid 7.3.2 Solid → Liquid 	93 94 97 97 100
	7.4 Upgrading Bio-Oil	106
	7.5 Perspective	107
	References	107
Chapter 8	Holistic Green Chemistry Metrics for Use in	
*	Teaching Laboratories	111
	Adélio A. S. C. Machado	111
	8.1 Introduction: The Rational Basis of Holistic	
	Green Chemistry Metrics 8.2 Holistic Metrics Based on the Twelve Principles	111
	of Green Chemistry	110
	8.2.1 The Basic Idea that Inspired the Metrics	119 119
	8.2.2 The Metrics: Green Star, Green Circle and Green Matrix	119
	8.3 Construction of the Metrics	121
	8.3.1 Basic Aspects	123
	8.3.2 Construction	123
	8.4 Use of Holistic Metrics in Teaching Activities	126 127
	8.5 Discussion	130
	8.5.1 Comparison of the Holistic Metrics	130
	8.5.2 Advantages of the Holistic Metrics	131
	8.5.3 Limitations of the Holistic Metrics	132
	8.6 Conclusions	134
	References	134
Chapter 9	Embedding Toxicology into the Chemistry Curriculum Nicholas D. Anastas	137
	9.1 Introduction 9.1.1 The Role of Medicinal Chemistry	137
	in Safer Chemical Design	138
	9.1.2 Toxicology and Sustainable Molecular Design	139
	9.1.3 Principles of Toxicology 9.2 Opportunities to Embed Toxicology into the	139
	Chemistry Curriculum	141
	9.2.1 Fundamental Molecular Forces Affect Toxicity	141
	9.2.2 The Influence of pH on Toxicity	142

	9.2	.3 Applying Thermodynamics and Kinetics	
		to Toxicology	144
	9.2	4 Redox Potential and Toxicity	145
	9.2	5 Metals	147
	9.2	6 Influence of Isomerism on Developmental	
		Toxicity: Thalidomide	147
	9.2	.7 Linking Chemical Reaction Mechanisms	
		with Mechanistic Toxicology	148
	9.2	8 Quantitative Structure–Activity	
		Relationships (QSAR)	150
	9.2	9 Steric Hinderance and Radical Stability:	
		Toxicity of Nitriles	151
	9.2.1	0 Environmental Toxicology	152
	9.3 Con	clusions	154
	Reference	es	155
Chapter 10	Green Che	emistry and Sustainable Industrial Technology	_
	Over 10 Ye	ears of an MSc Programme	157
	James Clar	k, Leonie Jones, and Louise Summerton	
	10.1 Intro	oduction	157
	10.2 Cour	rse Content	158
	10.3 Rese	arch Projects	159
	10.4 Cou	se Delivery	160
	10.4	1 Overview	160
	10.4	2 Perspectives of a Course Tutor	161
	10.4	.3 Views from External Contributors	
		to the Course	164
		4 Course Delivery Summary	167
	10.5 Stud	ents	167
	10.5	1 Academic Background	167
	10.5	2 Internationalization of the Student Intake	168
	10.6 Evol	ution of the Course	170
		1 Renaming of the Course	170
		2 RSC Accreditation	170
		3 Funding and Student Bursaries	171
		4 Modularization	171
		5 Project Area Groups	173
	10.6.	6 Transferrable Skills, Including Science	
		Communication	173
		nations of Graduates	174
		uate-Level Courses in Green Chemistry	
		nd the World	175
	10.8.	1 MSc in Sustainable Chemistry,	
		University of Zaragoza, Spain	175
	10.8.	2 MRes in Green Chemistry: Energy and the	
		Environment, Imperial College London, UK	176

	10.9 Future Vision of the MSc in Green Chemistry and Sustainable Industrial Technology at York Acknowledgements References	177 178 178
Chapter 11	The State of Green Chemistry Instruction at Canadian Universities John Andraos and Andrew P. Dicks	179
	 11.1 Introduction: Green Research and Teaching at Canadian Institutions 11.2 Green Chemistry Courses: Content 11.3 Green Chemistry Courses: Similarities and Differences 11.3.1 Similarities 11.3.2 Differences 11.4 Topics Not Yet Covered in Green Chemistry Courses 11.5 Feedback 11.5.1 Student Voices 11.5.2 Lecturer Voices 11.6 Green Chemistry Publications 11.7 Future Directions and Challenges in Green Chemistry Education 11.8 Appendix: Green Chemistry Student Survey References 	179 182 188 188 191 193 194 196 198 199 202
Chapter 12	Green Chemistry Education in Russia Natalia Tarasova, Ekaterina Lokteva, and Valery Lunin	210213
	 12.1 The Perception of Green Chemistry Concept in Russia as the Base for the Construction of Educational Schemes 12.2 Green Chemistry Education in Universities 12.2.1 Methodology 12.2.2 Green Chemistry Education at MUCTR 12.2.3 Green Chemistry Education at MSU 12.2.4 Green Chemistry Education at GUOG 12.2.5 Green Chemistry Education in Northern and Siberian Universities 12.2.6 Green Chemistry Education in Central and South Russia 12.3 Green Chemistry Education in Secondary Schools 12.4 Professional Training and Enlightenment of the General Public in the Field of Green Chemistry 12.4.1 Conferences, Workshops and Exhibitions 	213 219 219 219 222 225 226 232 235 238
	as a Part of Professional Training	240

Contents

	12.4.2 Cooperation with Foreign Partners and	242
	Publications	243
	Acknowledgements	246
	References	246
Chapter 13	Education in Green Chemistry: Incorporating Green Chemistry into Chemistry Teaching Methods Courses at the Universiti Sains Malaysia	248
	Mageswary Karpudewan, Wolff-Michael Roth, and	240
	Zurida Ismail	
	13.1 Introduction	248
	13.2 Background	249
	13.2.1 Relevance of Chemistry	249
	13.2.2 Green Chemistry	250
	13.3 Green Chemistry for Malaysian Pre-service and	
	In-service Science Teachers	251
	13.3.1 Introduction	251
	13.3.2 Green Chemistry for Pre-service Science	
	Teachers	252
	13.3.3 Green Chemistry for In-service Science	
	Teachers	252
	13.4 Green Chemistry Changes the Determinants	
	of Learning	254
	13.4.1 Introduction	254
	13.4.2 Effectiveness of Green Chemistry in	
	Enhancing Learning Motivation	255
	13.4.3 Effectiveness of Green Chemistry in	
	Enhancing Environmental Awareness	
	and Concerns	256
	13.4.4 Effectiveness of Green Chemistry in	
	Changing Attitudes, Motivations and Values	258
	13.5 Conclusion	263
	References	264
Chapter 14	Introducing Green Chemistry into Graduate Courses	
Chapter 14	at the Brazilian Green Chemistry School	266
	Peter R. Seidl, Estevão Freire, Suzana Borschiver, and	200
	L. F. Leite	
	14.1 Introduction	266
	14.1.1 A Brief Historical Perspective	267
		268
	14.1.2 The Chemical Industry	269
	14.1.3 A Strategy for Green Chemistry	270
	14.2 The Brazilian Green Chemistry School 14.2.1 Courses	270
	14.7.1 (4001565)	411

		Content
	14.3 Students	273
	14.3.1 Reflections by Feynman in Brazil	274
	14.4 Assignments	274
	14.4.1 Literature Searches	274
	14.4.2 Panel Discussions	275
	14.4.3 Case Studies	275
	14.5 Conclusions	276
	Acknowledgements	276
	References	276
Chapter 15	Educational Efforts in Green and Sustainable	
	Chemistry from the Spanish Network in	
	Sustainable Chemistry	278
	Santiago V. Luis, Belén Altava, M. Isabel Burguete, and	270
	Eduardo García-Verdugo	
	15.1 The Spanish Network of Sustainable	
	Chemistry (REDOS)	278
	15.2 Education in Green and Sustainable Chemistry	2/0
	from the REDQS Perspective	280
	15.3 Educational Initiatives from the REDOS	284
	15.3.1 General Initiatives	284
	15.3.2 The Spanish Inter-University Master and	
	PhD Programmes in Sustainable Chemistry	289
	15.4 Lessons Learnt after a Decade	301
	15.5 Future Perspectives	304
	Acknowledgements	305
	References	306
Subject Inde	x	308

CHAPTER 1

A Great Challenge of Green Chemistry Education: The Interface between Provision of Information and Behaviour Patterns

LILIANA MAMMINO*a

^aDepartment of Chemistry, University of Venda, Thohoyandou, South Africa *E-mail: sasdestria@yahoo.com

1.1 Introduction

Green chemistry¹⁻³ aims at promoting environmentally benign patterns, a change that is essential for development to be sustainable. In line with the nature of chemistry as the science of substances, green chemistry is concerned with all the stages of the 'life' of a substance or a material: production, utilization and final disposal. For the production stage, green chemistry aims at designing inherently safer substances and less-polluting manufacturing processes. Pursuing these objectives falls within the technical domain of the design of substances and processes and, therefore, it concerns chemistry research and the chemical industry. After the production stages, the rest