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Preface

After completing my dissertation in differential geometry, I returned to Maharishi
University of Management to join the faculty there. The greatest need for my
services was in the physics department, and the chairman, the well-known John
Hagelin, pointed the finger of authority and said ‘quantum field theory!” The class
was to start in a few weeks. I laughed, but John was serious.

Fortunately, I had audited Siduey Coleman’s outstanding Harvard lectures and
had taken very good notes. Equally fortunate, [ had Robert Brandenburger’s official
solutions to all the homework sets. I rolled up my sleeves and waded in.

As we battled through the material, the beautiful architecture of Coleman’s
course became apparent. It introduced the primnary concepts — canonical quanti-
zation, renormalization, spin, functional integral quantization ~ one at a time and
made each one practical before advancing to the next abstraction. It started with
simple models and provided motivation for each elaboration.

The students, however, pinned me to the board with questions about every step
in the logic. Could I produce some mathematics to fill the gap? Was there a physical
principle which would justify the proposed step? The standard references failed to
meet the need, and for the most part I was stumped. It was a couple of years later,
when the next group of graduate students was ripening, that I found time to think
out some answers. The result was a draft of the first nine chapters of this book.

Student feedback was most helpful for refining this draft, and as I began to take
on the teaching of more advanced material and continued to work with successive
classes, the notes developed into a pretty good book.

As this history indicates, this book is unique. The common approach in other
texts is generally either that of a model builder who aims at efficient presentation of
what works, or that of an applied mathematician who is trying to find a foundation
for the techniques of the practicing field theorist. The model builder tends to treat
technical mountains as molehills and conserves energy by omitting the details of
every derivation. The applied mathematician gets absorbed in the technical moun-
tains and does not get close to presenting anything practical. My work is half way
between these two. If I may be permitted a Fullerian sentence, my text aims to
provide the usual practical knowledge of QFT in comfortable stages naturally struc-
tured by the systematic introduction of fundamental principles, pleasantly enriched
with overviews, summaries, and delightful mathematical details.

It has been a pleasure to work with Coleman'’s notes, with the many students
who took my classes, and with Blue Sky Research’s implementation of TEX. I would
particularly like to thank Kurt Kleinschnitz for excellent suggestions, Sunil Rawal
for help with the closing chapters, Geoff Golner for explaining Wilson’s exact renor-
malization group, John Hagelin for pushing me off the deep end, and Maharishi
University of Management for the financial support that made this work possible.

This book is a great satisfaction to me, and I would like to thank Cambridge
University Press for making it possible to share this satisfaction with others. T hope
it will be a useful reference for physics students with questions in this area and an
intelligible introduction for mathematicians who are trying to find out what the
physicists are up to.

Robin Ticciati
Maharishi University of Management



Introduction

This text provides a mathematical account of the principles and applied techniques
of quantum field theory. It starts with the need to combine special relativity and
quantum mechanics, and culminates in a basic understanding of the Standard Model
of electroweak and strong interactions. The exposition is enriched with as much
mathematical detail as is useful for developing a practical knowledge of quantum
field theory. All the details can be brought out in a three semester course, and
the main ideas can comfortably occupy two semesters. The prerequisites for this
presentation are (1) familiarity with the Hilbert-space formalism of quantum me-
chanics, (2) assimilation of the basic principles of special relativity, and (3) a goodly
measure of mathematical maturity.

The book is divided into five parts. These cover (1) canonical quantization of
scalar fields, (2) Weyl, Dirac, and vector fields, (3) functional integral quantization,
(4) the Standard Model of the electroweak and strong interactions, and (5) renor-
malization. Each of the five parts introduces one primary new principle and, having
developed that principle to a goodly degree of practicality, naturally motivates its
own extension in the next part.

Part 1, Chapters 1-5, presents the principles that transform quantum mechan-
ics and special relativity into canonical perturbative quantum field theory. Its goal
is to arrive at cross sections with minimal technical machinery. Part 2, Chapters
6-9, provides fields for realistic models like QED. It covers representation theory
of the Lorentz group and extends the principles of Part 1 to Weyl spinors, Dirac
spinors, and massive vector fields. At the end of Part 2, three weaknesses of per-
turbative canonical quantization are apparent, namely, its application to unstable
particles, derivative interactions, and gauge theories. This motivates Part 3, Chap-
ters 10-13, in which Haag-Ruelle scattering theory, renormalization, and functional
integral quantization are developed. Using this new formalism, Part 4, Chapters
14-17, presents the structure of the Standard Model, introduces hadrons, and pro-
vides tree-level applications of the Standard Model. Finally, having taken tree-level
theory about as far as is useful, Part 5 goes more deeply into regularization, renor-
malization, renormalizability, and the renormalization group.

The principles, examples, and techniques presented in this text are, for the
most part, quite standard. However, the detailed treatment of the representation
theory of the Lorentz group and SU(3) in Chapters 6 and 14 respectively is unusual
and helps to make this text self-sufficient. The use in Chapter 7 of Weyl spinor
fields as an aid to deriving Feynman rules for Fermi fields is also unusual. The
two-component spinor notation built up in that chapter is more commonly used in
superfield thgory.

Internal references are written without parentheses in the form ‘12.3.6’ rather
than ‘(12.3.6)". To save the reader from looking up references unnecessarily, ref-
erences are qualified by descriptive phrases rather than by an unhelpful noun.
For example, we write ‘the winding-number formula 13.7.11’ rather then ‘Theo-
rem 13.7.11°.
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Chapter 1

Relativistic Quantum Mechanics

Uniting the operator and state-space formalism of quantum me-
chanics with special relativity through a unitary representation of
the Poincaré group.

Introduction

Chapters 1 to 5 constitute the first part of this book. They develop the theory of
the scalar field from its roots in special relativity and quantum mechanics to its
fruits in cross sections and decay rates. The technique of quantization developed
here will be applied in the second part — Chapters 6 to 9 — to spinor and vector
fields. )

Taking quantum mechanics, with its formalism of state space, Hamiltonian,
and observables, together with relativity, with its emphasis on invariance under
Lorentz transformations, as the two major pillars or principles in our understanding
of particle physics, the purpose of this chapter is to introduce a framework in which
both principles coexist.

Section 1.1 clarifies the concept of a state space, putting physical states, posi-
tion eigenstates, and momentum eigenstates into proper relationship. Section 1.2
takes the first step towards a relativistic quantum theory by promoting the energy
and momentum observables into a Lorentz vector. Section 1.3 uses this vector to
construct a unitary representation of translations on state space, Section 1.4 uses
an independent construction to build a unitary representation of the Lorentz group,
and Section 1.5 shows that these two representations determine a unitary represen-
tation of the Poincaré group. At this point, the principle of special relativity is
effectively built into the formalism of quantum mechanics. Only the position oper-
ator has yet to be introduced. Section 1.6 shows that, if we adjoin eigenstates of
the position operator to our state space, then there is a probability for signals to
travel faster than light.

Although this probability is too small to be ruled out by experiments to date,
we decide to uphold relativistic causality and drop the position operator from the
theory. To model localization of events, we localize measurement using fields of
observables.

For simplicity of notation, we shall choose units such that the speed of light ¢
and the reduced Planck constant i are both unity:

¢c=1 and h=1 (1.0.1)

This choice of units reduces the three units time, length, and mass, to a single unit
which we will generally call mass:

T=L=M"". (1.0.2)

When it is necessary to compare with experiment, it will be easy to insert the factors
of ¢ and k which convert the units of a prediction into the units of the data. Indeed,
if our result has units M* and the physical units for the result should be M brerd,
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then consistency requires @ = b — ¢ ~ d and the conversion is accomplished by the
equation ’

(Answer in units AL°T9) = (Answer in units M%) x AP~ x ¢354, (1.0.3)

Throughout this text, we shall take the metric on Minkowski space to be

1 0 0 0
0 -1 0 O
By
9 =10 o0 -1 o |’ (1.0.4)
0 0 0 -1
and we use the dummy suffix conventions
a* = g"a,,
3
ab=a'b, =) akb, = g*a,b,, (1.0.5)

=0
a®* = (a-a)*.

1.1 One-Particle State Space — Mathematics

We want our one-particle state space to include states with definite energy and
momentum. In fact we want more. We want a basis for state space in which the
energy and momentum operators are simultaneously diagonal. To fulfill this desire,
an excursion into mathematics is necessary. However, a little explanation will be
sufficient for practical purposes. In this section, we present the little explanation
and indicate the relevant mathematics in two remarks.

The function space used to model quantum-mechanical states is a Hilbert space
H of square-integrable functions on physical space. The functions in H can be
written either as functions of position Z or as functions of momentum p. The
position-space representation is related to the momentum-space representation by
the Fourier transform F:

FH®)E / dz &P f(2). (1.1.1)

Despite the change of independent variables from Z to p, the function F(f) is in H,
and F maps H to itself.

Remark 1.1.2. Actually, if f is square-integrable, then the function e f(F) is certainly
square-integrable but it may not be integrable. To define the Fourier transform on H, it
is necessary to define it first on some good subspace of H (such as the space of smooth
functions with compact support) and then to use the fact that the Fourier transform is
an isometry (up to a scale factor) on this subspace to extend the Fourier transform to an
isometry of H itself.

The position operators X, and momentum operators P, are represented re-
spectively by multiplication by coordinate functions z, and the partial derivative
operators —i0,. The Fourier transform converts multiplication by z, on functions
of T into the differential operator —id, on functions of p:

Flz: f)(p) = —i0-F(f)(H)- (1.1.3)



1.1 One-Particle State Space — Mathematics
The eigenstates of the position operator are the delta functions:
(X,85)(2) = 2,8(2 - ) = 0.5 — 3) = (4:6,)(3), - (L14)

and the eigenstates for the momentum operator P, are the exponential functions
e5(%) = exp(ip-2):

(Prep)(T) = ~idy exp(ip-T) = p, exp(if-Z) = (pres)(Z). (1.1.5)

A technical problem now arises: neither X, nor P, act on the whole of H, and
H does not contain the eigenstates of either operator. The first part of the problem
is solved by defining a subspace S of physical states in H which will be mapped into
itself by X, and Fr. The second part is solved by defining the kets (ideal states) as
elements of the space S* of continuous anti-linear functionals on S. Indeed, since
P, acts on the functions in S, these functions must be infinitely differentiable, and
so §* will contain the & functions and all their derivatives. Similarly, taking the
Fourier transform of this point, since X, acts on S, S* will contain the exponential
functions exp(ip-T).
Thus, instead of one Hilbert space H, quantum theory uses a triple of normed
vector spaces:
SCHcCS. (1.1.6)

The physical states live in § and the operator eigenstates live in §*. With appro-
priate conditions on S, such a triple is called a rigged Hilbert space.

Remark 1.1.7. In fact, the triple S C H C S* is a rigged Hilbert space if S is a nuclear
subspace of H{. One condition for this is that (a) there exist a countable family || ||« of
norms on § with respect to which convergence is defined by

fn—=f <= |fao~fllx —0 forallk>0, (1.1.8)

(b) § is complete with respect to this notion of convergence, and (c) there exists a Hilbert—
Schmidt operator on S with a continuous inverse.

To link our example above with this structure, let H be the Hilbert space of functions
whose kth derivatives are square-integrable, let Sx be the intersection of Hj with its Fourier
transform F(Hy), and let || {[x (k£ > 0) be the norm which makes Sy a Hilbert space. Then
we can take S to be the intersection of the Sk. If IV is the number operator of the quantum
oscillator, then 1 + N is a Hilbert-Schmidt operator on S which has a continuous inverse.

This area of mathematics is well developed. However, its impact on field theory has
been small. So we shall make no further remark on these technicalities.

In a rigged Hilbert space, the physical states have eigenstate expansions. Trans-
lating into the notation of quantum mechanics, let |f) be the state represented by
the function f, and let |Z) be the position eigenstate represented by the distribu-
tion dz. We assume that the relationship between functions and kets is such that

f(z) = (|f). (1.1.9)

Then the expansion of the state |f) in terms of the position eigenstates |Z) should
have the form

0= [EaRan = @@, (L110)



