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Linear Acoustic Theory.:
By
Puirie M. Morse and K. UNoO INGARD.
With 2 Figures.

A. Basic concepts and formulas.

Acoustical motion is, almost by definition, a perturbation. The slow compres-
sions and expansions of materials, discussed in thermodynamics, are not thought
of as acoustical phenomena, nor is the steady flow of air usually called sound.
It is only when the compression is irregular enough so that over-all thermodynamic
equilibrium may not be maintained, or when the steady flow is deflected by
some obstacles so that wave motion is produced, that we consider part of the
motion to be acoustical. In other words, we think of sound as a by-product,
wanted or unwanted, of slower, more regular mechanical processes. And whether
the generating process be the motion of a violin bow or the rush of gas from a
turbo-jet, the part of the motion we call sound usually carries but a minute
fraction of the energy present in the primary process, which is not considered to
be acoustical. '

This definition of acoustical motion as being the small, irregular part of some
larger, more regular motion of matter, gives rise to basic difficulties when we
try to develop a consistent mathematical representation of its behavior. When
the irregularities are large enough, for example, there is no clear-cut way of
separating the “acoustical” part from the “non-acoustical” part of the motion.
For example, in the midst of turbulence, the pressure at a given point varies with
time as the flow vortices move past; should this variation be called a sound wave
or should it be classed as the necessary concomitant of turbulent flow ? Of course
this vorticity produces pressure waves which extend beyond the region of tur-
bulence, travelling in the otherwise still fluid with the speed of sound. Here we
have no trouble in deciding that this part of the motion is acoustic.  For tne
far field the distinction between acoustic and non-acoustic motion is fairly clear;
for the near field the distinction often must be arbitrary.

So any definition of the nature of sound gives rise to taxonomic difficulties.
If sound is any fluid motion involving time variation of pressure, then the theory
of turbulence is a branch of acoustical theory. On the other hand, if sound is
that fluid disturbance which travels with the speed of sound, then not only is
turbulent motion not acoustic motion but also shock waves and other, non-
linear or near-field effects are not included. In fact only in the cases where the
non-steady motions are first-order perturbations of some larger, steady-state
motion can one hope to make a self-consistent definition which separates acoustic

" from non-acoustic motion and, even here, there are ambiguities in the case of
some types of near field, as will be indicated later in this article.

Thus it is not surprising that the earliest work in—and even now the majority
of —acoustic theory has to do with sitnations where the acoustical part of the
motion is small enough so that linear approximations can be used. These situations,

Haidbuch der Physik, Bd, X1/1 ¢ 1



2 PuiLir M. Morse and K. UNo INGARD: Linear Acoustic Theory. Sect. 1.

and the linear equations which represent them, are the subject of this article.
Strictly speaking, the equations to be discussed here are valid ‘only when the
acoustical component of the motion is “sufficiently”” small; but it is only in this
limit that we can unequivocably separate the total motion into its acoustical
and its non-acoustical parts. As we have said, even here there are cases where
the line of division is not completely clear, particularly when we try to represent
the motion by partial differential equations and related boundary conditions;
only when the representation is in terms of integral equations is the separation
fairly straight-forward, even in the small-amplitude limit.

Still another limitation of the validity of acoustical theory is imposed' by the
atomicity of matter. The thermal motions of individual molecules, for instance,
are not representable (usually) by the equations of sound; these equations are
meant to represent the average behavior of large assemblies of molecules. Thus
in this article, for instance, when we speak of an element of volume we im-
plicitly assume that its dimensions, while being smaller than any wavelength
of acoustical motion present, are large compared to inter-molecular spacings.
Thus also, when we discuss the production of sound by the motion of boundaries,
we take for granted that the boundary velocity is not greater than the mean
thermal velocity of the fluid molecules.

In the present article we shall first develop the linear equations of acoustics,
both their differential and integral counterparts, and discuss the:various forms
which are appropriate for different circumstances as well as the: various basic
techniques of their solution. We also discuss the effect, on these equations, of
regular changes (in both time and space) of pressure, density, temperature and
flow. The remainder of the article will deal with examples of the solution of these
equations for situations of interest at the present time. No attempt will be made
for complete coverage; the available space would preclude any such exhaustive-
ness, even if the authors had desired it.

I. The differential equations of linear acoustics.

1. Basic equations of motion [1], [13], [16], [29], [60], [70], [(73]. Consider-
ing the fluid as a continuous medium, two points of view can be adopted in des-
cribing its motion. In the first, the Lagrangian description, the history of each
individual fluid element, or ““particle”, is recorded in terms of its position as a
function of time. Each particle is identified by means of a parameter, which
usually is chosen to be the position vector 7, of the element at #=:0. Thus the
Lagrangian description of fluid motion is expressed by the set of functions
T =r(ry, !). _

In the second, or Eulerian, description, on the other hand, the fluid motion
is described in terms of a velocity field ¥ (», #) in which # and ¢ are now independent
variables.  The variation of V (or of any other fluid property, in this description)
with time thus refers to a fixed point in space rather than to a specific fluid
element, as in the Lagrangian description. If a field quantity is denoted by ¥,
in the Lagrangian and by ¥ in the Eulerian description, the relation between
the time derivatives in the two descriptions is

d¥ oY,
'27£=*5,£+(V'V)%- (1.1)

We note that in the case of linear acoustics for a homogeneous medium at rest
we need not be concerned about the difference between (4 ¥ /d¢t) and (0 ¥/04),
since the term (V- V) ¥ is then of second order. However in & moving or
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inhomogeneous medium the distinction must be maintained even in the linear
approximation.

We shall ordinarily use the Eulerian description and if we ever need the La-
grangian time derivative we shall express it as (@P)dt) = (oW[ot) +(V -V)¥
(without the subscripts). In this article the fluid motion is expressed in terms
of the three velocity components V; of the velocity vector V. In addition, of
course, the state of the fluid is described in terms of two independent thermo-
dynamic variables such as pressure and temperature or density and entropy
(we assume that thermodynamic. equilibrium is maintained within each volume
element). Thus in all we have five field variables; the three velocity components
and the two independent thermodynamic variables. In order to determine
these as functions of » and ¢ we need five equations. These turn out to be the
conservation laws: conservation of mass (one equation), conservation of mo-
mentum (three equations) and conservation of energy (ene equation).

The mass flow in the fluid can be expressed by the vector components
eV
and the fotal momentum flux by thé tensor
tij=F;+ QT’J’}.

in which the first term is the contribution from the thermal motion and the second
terms the contribution from the gross motion of the fluid. The term P; is, of
course, the fluid stress tensor :

P is the total pressure in the fluid, D;; is the viscous stress tensor, & and # are
two coefficients of viscosity, and

ceadi(10V av;
Uﬁ“”z‘(?i; * 7o)

is the shear-strain tensor. In this notation the bulk viscosity would be 3 & --2#,
and if this were zero (as STOKES assumed for an ideal gas) then z would equai
—3.¢/2. However acoustical measurement shows that bulk viscosity is not usually
zero (in some cases it may be considerably larger than %) so we will assume that
¢ and 7 are independent parameters of the fluid.

In addition, we define the energy density of the fluid as
h=30V*+E,

the sum of its kinetic energy and the internal energy (E is the internal energy
per unit mass) and the energy flow vector

L=hV+ 3 BV — K5
,. .

xj

in which — K(87]x;) is the heat flow vector. The term 3, F;; V; contains the work

’ .
done by the pressure as well as the dissipation caused by the viscous
st¥Bsses. -

%
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The basic equations of motion for the fluid, representing the conservation
of mass, momentum and energy (exactly) can thus be written in the forms

- 6 V’.
PR (1.2
aeV) Y Otip :
arnt Dy =El), (13)
A oh ~ el
1 o ? e H(r,{) (1.4)

in which Q, F; and H are source terms representing the time rate of introduction
of mass, momentum aad heat cnergy into the fluid, per unit volumre, The energy
equation can be rewritten in a somewhat different form; !
13 PE 01 osr b SN
g g(‘;’f+-v-r'ﬁ):lxvzl Ly ) ey (1.5)
which represents the fact that a given element of fluid has its internal energy
changed either by heat flow, or by viscous dissipation

D=3D,U;=e3 U2 429y U2,
1 7 12

or by direct change of volume, or else by direct injection of heat from outside

the system. ¢

This last form of the energy eqaation can, of course, be obtained directly
from the first law of thermodynarnics (4F [dt) =T(dS/d¢) +(Plo?) (do/dt) if, for
the rate of entropy production per unit mass, we introduce

P g Y
ind for the density change dp/dt we use te0/0) +V-Vop=—op.V.

If we wish io change from one pair of thermodynamic variables to another
we usually make use of the eguation of state of the gas. For a perfect gas this is,
of course,

P=ReT [see also Eq. (3.1)]. 4.7)

2. The wave equation. Returning to Egs. (1.2) to (1.4), by elimination of
7*{p V}) 7%, &1 from the first two, we obtain

-

O =20 8B pan Can ] DS E(eVV))
e~ Vo= G = iR “°0)T§{?&7&z‘ w05 |0 (2)

Ne have here subtracted the term o2 1’20 froin both sides of the equation, where ¢,
is the space average of the velocity of sound (¢y can depend on #). The right-
aand terms will vanish for a homogeneous, loss-less, source-free medium at rest
he vesult is the tamiliar wave equation

" 1. 2o

V2o — e i1 =10

3 ‘ot

‘or the density. Under all other circumstances the right-hand side of Eq. (2.4)
will not vanish, but will represent some sort of sound “source”’, either produced
by external forces or injections of fluid or by inhomogeneities, motions or losses
m the fluid itself (this will become more apparent when we separate the equation
mto 1ts successive approximations, in the next section).
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The first tesm, representing the injection of fluid, gives rise to a monopole
wave, as will be seen in Sect. 14. For air-flow sirens and pulsed-jet engines,
for example, it represents the major source term. The second terra, correspond:
ing to body forces on the fluid, gives rise to dipole waves, as will be indicated i
Sect. 14. Even when this term is independent of time it may have an cfiect
on sound transmission, as we shall see later, in the case of the force of gravity
for example.

The third term on the right of Eq. (2.1) represents several effects. From
Eq. (3.1) we will see that a variation of pressure is produced both by a density
and an entropy variation. When the fluid changes are isentiopic the term cor-
responds to the scattering or refraction of sound by variations in temperature
or composition of the medium. It may also correspond to a source of sound, in
the case of a fluctuating temperature in a turbulent medium. We shail return
to this term in a later sub-section. If the motion is not isentropic, the term
V2( P —cko) also contains contributions from cutropy fluctuations in the medinom.
These effects will include losses produced by heat conduction and also the genera-
tion of sound by heat sources.

The fourth term, the double divergence of D,;, represents the effects of vis-
cous losses andfor the gencration of sound by oscillating viscous stresses in a
moving medium. If the coefficients of viscosity should vary from point to point,
one would also have an effect of scattering from such inhomogeneities, but
these are usually quite negligible. Finally the fifth term, the double divergence
of the term gV V] represents the scattering or the generation of sound caused by
the motion of the medium [307, [31], [52]. If the two previous terms are thought
of as stresses produced by thermal motion, this last term can be considered as
representing the “‘Reynolds stress” of the gross motion; it is the major source
of sound in turbulent flow. As will be indicated later, this term produces quadru-
pole radiation.

3. The linear approximation. After having summarised the possible effecis
in fluid motion we shall now consider the problem of linearisation of Eqs. {12/
to (1.4) and the interpretation of the resulting acoustic equations. Eqs. (1.2} to
{1.4) are non-linear in the variables ¢ and V;. Not only are there terms where
the product eV, occurs explicitly, but also terms such as % and I, implicitly
depend on p and ¥ in a non-lincar way. Furthermore, the momentum flux ¢,
is not usually lircarly related to the other field variables. In the first place the
gross motion of the fluid (if there is such motion) contributes a stress ol V]
and in the second place there is a non-linear relationship between the pressure {7
and the other thermodynamic variables. For example, in an isentropic motion
we have (P/F,) = (o/ge)” and, for a non-isentropic motion we have

;’ ¢l (.,9_.}-” S —SuICy (3.1}
‘o " o/

Expanding this last equation, we can obtain

!
P Py = ¢

Ol lois. LR e e
90 0~ @) 4 95, 65 i 8g)

1 {02P ctP QA2
+ 2[393 (e — 0o)? + ast o o S0)'} e

—ct(e—e) + o (S— S+ ;b —Nete—o+

) RPEE
+ 3o AS — So)* 4
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where the C’s are specific heats, y =(C,/C,) and ¢® == (y P,/g,). Thus only when
the deviation of P from the equilibrium value P, is small enough is the linear
relation

Prs B+ — @) +-2(S— S (3-3)

Ol

2 good approximation.

As was noted in the introduction, in acoustics we are usually concerned with
the effects of some small, time-dependent deviations from the “equilibrium state ”’
of the system. When the equilibrium state is homogeneous and static, the per-
turbation can easily be separated off and the resulting first-order equations
are relatively simple. But when the ““equilibrium state’” involves inhomogeneities
or steady flows the separation is less straight-forward. Even here, however, if
the inhomogeneities are confined to a finite region of space, the equilibrium state
outside this region being homogeneous and static, then the separating out of
the acoustic motions in the outer region is not difficult. This will be discussed
again in the Division on integral equations (Sects. 12 to 17).

In any case, we assume that the medium in the equilibrium state is described
by the field quantities ¥ =w, P, g,, T, and S,, for example, and define the
wcoustic velocity, pressure, density, temperature and entropy as the differences
between the actual values and the equilibrium values

Uu=V-V=v—uv; =P —PF, "d=0—p,;
0 P 0 e 90} (3.4)

§ =l ot Tgpon idhetSromi S s

If u, p etc., are small enough we can obtain reasonably accurate equations, in-
volving these acoustic variables to the first order, in terms of the equilibrium
values (not necessarily to the first order). If we have already solved for the
equilibrium state, the equilibrium values ¥, = », P,, etc., may be regarded as
known parameters, p, u, etc., being the unknowns. Thus the first order relation-
ship between the acoustic pressure, density and entropy arising from Eq. (3.2) is

pmc’-é—{—g-a’. {3.5)

Our procedure will thus be to replace the quantities g, ¥, 7 etc., in Egs. (1.2)
to (1.5) by (00 +9), (v +u), (T,+6), etc., and to keep only terms in first order
of the acoustic quantities d, u, 0, etc. The terms containing only g,, v, T,, etc.
{which we will call the inhomogeneous terms) need not be considered when we are
computing the propagation of sound. On the other hand, in the study of the
generation. of sound these inhomogeneous terms are often the source
terms.

In general the linear approximation thus obtained will be valid if the mean
acoustic velocity amplitude |u| is small compared to the wave velocity ¢. There
are exceptions however. In the problem of the diffraction of sound by a semi-
infinite screen, for example, the acoustic velocity becomes very large in the
regions close to the edge of the screen. In such regions non-linear effects are to be
expected.

The linearised forms for the equations of conservation of mass, momentum
and energy, and the equation of state (perfect gas), for a moving, inhomogeneous
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medium, are
00
YTl + 4 Z

% (0o %, + 0v;) + ; *337]. (00 (w;v; + #;0;) + v, v; + Pyl = F, (3.7)

o0v; du; o) 17
A G+ Bl w @ =T 3.6)

(55 +u-VSi)+ 5 e~ KV O+ dn Tuyv + H, (3.8)
‘ &
paRO +RT,8=c20 + o (3.9)
where
i @ ;s
5 =_67+ (V'V)»
1 (Ou; ou;
wi=5 (55t 5n)
and

Pij=p8;—dy,
d;j = e div (W) 8;; + 20 uy;

are acoustic counterparts of the quantities defined earlier. The source terms
Q, F and H are the ‘non-equilibrium”’ parts of the fluid injection, body force
and heat injection; the equilibrium part of Q, for example, having been cancleed
against (8p,/9%) + div (go®) from the left-hand side of (1.2).

These results are so general as to be impractical to use without further speciali-
sation. For example, one has to assume that div o =0 (usually a quite allowable
assumption) before one can obtain the linear form of the general wave equation,

(ia%+v-V)z“—V’Ma—aQr'V’“V‘@'V B:A9)

where the last term is the double divergence of the tensor D, which has elements
d;;. In order to obtain a wave equation in terms of acoustic pressure p alone,
we must determine é and 4, in terms of . To do this in the most general case
is not a particularly rewarding exercise; it is much more useful to do it for a
number of specific situations which are of practical interest. This will be done
in the next sections. ;

But, before we go to special cases, it is necessary to say a few words about
the meaning of such quadratic quantities as acoustic intensity, acoustic energy
density and the like. For example the energy flow vector

I=(eV?+eE)V+% - V—KgradT (3.11)

where B is the fluid stress tensor, with elements ;. The natural deéfinition of
the acoustic energy flow would be

i= (I)with sound ™ (I)withont sound = i Io 3 (3'12)

with' éorresponding expressions for the acoustic energy density, w==W —W,,
and mass flow vector, (@ V)with souna — (0o ¥p). Similarly with the momentum flow
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tensor, from which the acoustic radiation pressure tensor is obtained,
mij —— (P” -I— 1] V; I;)with sound ~ (P” ‘+‘ o L',‘ V]:)without sound - (3 l';)

These quantities clearly will contain second order ierms in the acoustic
variables, therefore their rigorous calculation would require acoustic equations
which are correct to the second order. As with Eq. (3.40), it is not very useful
to perform this calculation in the most general case; results will be obtained
later for special cases of interest. It is sufficient to point out here that the acoustic
energy flow, etc., correct to second order, can indeed be expressed in terms of
products of the first order acoustic variables.

In the general acoustic equations (3.6) to (3.9) we have included the source
terms @, F and H, corresponding to the rate of transfer of mass, momentum
and heat energy from external sources. The sound field produced by these
sources can be expressed in terms of volume integrals (see subsection 13) over
these source functions. As mentioned above, we have not included terms, such as
eV;V; or P2F,, which do not include the acoustic variables. The justification
for this omission is that these terms balance each other locally in the equations
of motion, for example fluctuations in velocities are balanced by local pressure
fluctuations, and the like. These fluctuations produce sound (i.e. acoustic radia-
tion) but in the region where the fluctuations occur (the near field) the acoustic
radiation is small compared to the fluctuations themselves. However, the acoustic
radiation produced by the fluctuations extends ouiside the region of fluctuation,
into regions where the fluid is otherwise homogeneous and at rest (the far field)
and here it can more easily be cuomputed (and, experimentally, more easily
measured).

Thus, in the study of the generation of sound by fluctuations in the fluid itself,
it is essential to retain in the source terms the terms which do not contain the
acoustic variables themselves, Within the region of fluctuation, the differentiation
between sound and ““ equilibrinm motion”’ is quite artificial (the local fluid motion
could be regarded as part of the acoustic near field) and in many cases it will
be more straightforward to use the original equations {(1.2) to (1.5) and (2.1)
in their integral form (see Sect. 13), where the net effect of the sources will appear
as an integral over the region of fluctuation.

4. Acoustic equations for a fluid at rest. In this section and the next we will
discuss the special forms taken on by Eqs. (3.0) to (3.13) when the equilibrium
state of the fluid involves only a few of the various possible effects discussed
above. At first we will assume that, in the equilibriumn state, the fluid is at rest
and that the acoustic changes in density are isentropic (o ==0). In this case the
relation between the acoustic pressure  and the acoustic density ¢ is simply

ke

LA Ay A £

(4.1)

from Eq. (3.3). [From here on we will omit the subscript 0 from the symbols
for equilibrium values in situations like that of Eq. (4.1), where the difference
between P and P, or ¢ and g, would make only a second-order difference in the
equations. We also will use the symbol = ‘instead of a; from now on we are
committed to the linear eqnations.] The wave equation (3.10) then reduces to
the familiar 3
[72,) o 1z ot

§ =0 (4.2)
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Once the pressure has been computed, the other acoustic variables follow
from the equations of the previous subsection;
Velocity, w = - -z; f grad p dt

10 1
~ dkoc

Displacement, d = fudt = — F:Ei gradp "(p'=pyev o' =k ey, '{ (43}

gradp ~(p'—=pge-*t ="k}

T C
Temperature, 6 = (y — 1) (;;15 (y = Ct)’

Density = %

All these variables satisfy a homogeneous wave equation such as Eq. (4.2). For
a plane sound wave, which has the general form p=/(ct—mn - ) (where n is a
unit vector normal to the wave front), the acoustic velocity is

u_-_%f(ct——n-r). (4.4)

The quantity pc is called the characteristic acoustic impedance of the medium.
Since div d is the relative volume change of the medium, we can use Eq. (4.1)
to obtain another relation between d and 2 ;

p=—pctdivd (4.5)
which states that the isentropic compressibility of the fluid is equal to (1/oc?).
The sound energy flow vector (the sound intensity) is

i={>u=gcu’n=-§%n. (4.6)

1t is tempting to consider this equation as self-evident, but it should be remembered
that i is a second-order quantity which must be evaluated from Eq. (3.12). In
the special case of a homogencous medium at rest the other second-order terms
cancel out and Eq. (4.6) is indeed correct to second order [35], [65]. In a moving
medium, the result is not so simple [61].

The situation is also not so straightforward in regard to the mass flow vector.
One might assume that it equals dw, but this would result in a non-zero, tirne-
average, mass flow for a plane wave, an erroneous result. In this case the addi-
tional second-order terms in the basic equations do contribute, making the mass
flow vector zero in the second-order upproximation.

On the other hand the magnitude of the acoustic momentum flux is correctly
given by the expression p%? to the second order. The rate of momentum transfer
is, of course, equal to the radiation pressure on a perfect absorber [3].

Generally we are interested in the time average of these quantities. For single-
frequency waves (time factor e™**¢) these are

" i=§Re(pu) (4.7)
where the asterisk denotes the complex conjugate. For a plane wave {see Eq. (4.4)]
ot g G 2
i= pclul*n= 2@&'1)' : (4.8)
The acoustic energy density is
asy! o LA 51
= elult 4o 1pl (4.9)
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where the first term is the kinetic energy density and the second term the po-
tential energy density. In a plane wave these are equal. We note that the magni-
tude of the acoustic radiation pressure is thus equal to the acoustic energy density.

The simple wave equation (4.2) is modified when there are body forces or
inhomogeneities present, even though there is no motion of the fluid in the equi-
librium state, as two examples will suffice to show. For example, the force of
gravity has a direct effect on the wave motion, in addition to the indirect effect
produced by the change in density with height. In this case the body force F
is equal to gg, where g is the acceleration of gravity and thus the term div F
in Eq. (3.10) becomes g - Vo 4oV - g, where the magnitude of the second term
is to that of the first as the wavelength is to the radius of the earth, so the second
* term can usually be neglected. Therefore the wave equation, in the presence of
the force of gravity is

2%p

= Ve g Vp. (4.10)

The added term has the effect of making the medium anisotropic. For a
simple harmonic, plane wave exp (ikn - r —iwt) if n is perpendicular to g then
k = (w/c), but if m is parallel to g the propagation constant £ is

; 2
R e e (4.11)

We note that a wave propagating downward (in the direction of g) is attenuated
at a rate e™**, where a = (g/2¢?), independent of the frequency, and its phase
velocity is c/V1_—.— (e?/4ctw?). Tf the frequency of the wave is less than (g/47e)
there will be no wave motion downward,

A similar anisotropy occurs when the anisotropy is not produced by a body
force but is caused by an inhomogeneity in one of the characteristics of the me-
dium. In a solid or liquid medium the elasticity or the density may vary from
point to point (as is caused by a salinity gradient in sea-water, for:instance).
If the medium is a gas the inhomogeneity must manifest itself by changes in
temperature and/or entropy density. For a source-free medium at rest, Eq.(3.10)
shows that (6%6/0¢%) = V%, but this equation reduces to the usual wave equa-
tion (4.2) only when the equilibrium entropy density is uniform and the‘acoustical
motions are isentropic. If the equilibrium entropy density S, is 7ot uniform the
wave equation is modified, even though the acoustic motion is still isentropic.

If the acoustic disturbance is isentropic then (d S/d#) = (2 S/ot) +u -V S =0,
and if the equilibrium entropy density S, is a function of position but not of time,
then

2 fu-VS,=o. (4.12)

Referring to Egs. (3.5) and (4.3), we obtain
80 1 ap ¢ 98 1 9p

S8 UESOr o ORI b O OO
ot Cz ot CP ot c? ot +Cpu VSO’
and thus

#8 1 &p

1
= o G, P VS
which, when inserted into Eq. (3.10) for a source-free medium at rest fimally
produces the equation

(i .
e =V VP VS, (4.13)

c
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which has the same form as Eq. (4.10) representing the effect of gravity. Thus
an entropy gradient in the equilibrium state will produce anisotropy in sound
propagation. As with the solutions for Eq. (4.10), sound will be attenuated in
the direction of entropy increase, will be amplified in the direction of decreasing S;.
However a much larger effect arises from the fact that a change in entropy
will produce a change in ¢ from point to point, so that the coefficient of (8%#/9#?)
in Eq. (4.13) will depend on position.

5. The effects of motion and of transport phenomena. The effects of fluid
motion can be demonstrated by discussing the behavior of a non-viscous, source-
free, isentropic fluid moving with uniform velocity » in the x direction, with
respect to the coordinates #, y, z. In this case the wave equation (3.10) reduces to

aﬂ F thar axaz it ¥ 2 B p=0. (5'1)

The relation between the various acoustic variables may be obtained from
Egs. (3.6) to (3.9),

(’aa'i+v“a’a})5=——edivu: 9(%‘”‘8?}')0:(}’”1)1] <
(31 +U— )u = —gradp. I i

It is clear that in a coordinate system moving with the medium, x’ = x — ¢,
¥' =1y, 2’ =2z, Eq. (5.1) reduces to the simple wave equation (4.2). However in
many problems we have to do with boundaries which are at rest in the x-coordi-
nates, so it is convenient to use Eq. (5.1). This can be simplified somewhat by
changing the scale in the x direction,

p 5 J oMy g =y lapea

1/1 M2 ¢
in terms of which Eq. (5.1) becomes
SN (12M0) - PRI alpaipl
oF T Vioar 0i0xm  ° L (5-3)

An alternative coordinate system, useful in studymg the radiation from
stationary source in a moving medium, is one moving with the medlum but
contracted in the direction of motion,

dad x Liamaqetos owl i3 10 stbuil 3 oha fimolaey
P TN Iam O YPE e m Oy 2 AT < TR5T
which results in the wave equation

1 &2 1 #p
e "a,f: +35 Sy 5 azl g e T {3t

To study the effects of transpor’c phenomena, such as viscosity and heat

conduction [22], we consider a homogeneous, source-free medium at rest. The
linearised Egs. (3.6) to (3 .9) then become

%‘3—4— edivu = 0; g(cgj’) + Z(%@]i) =240}
7
QCI,(%%)-—-KVZG—— Pdivu; p=RT& Rpb

(5-5)
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where, as before, p,;=(p—e divu) §,;,—n[{0n,/ox) + (0u;/éx;)1. The presence
of viscosity introduces vorticity into the fluid motion, in which case it is con-
venient to express the acoustic velocity as the sum of an irrotational part u,
(curlu, =0) and a rotational part u, (div u, =0). The equation for u, comes
from the second of Egs. (5.9),

n?:‘ =nV?u, = — 3 curl (curl u,) {5.0)

which corresponds to the diffusion of vorticity, caused by viscosity, into the sound
field.

The irrotational part of # san most easily be obtained from the gradient of 6.
By eliminating div # between the second and third of Eqs. (5.5), we can obtain
a differential cquation for §. In the case of barmonic time dependence, where
- the time factors are e~'®* and (w/c) =k, this equation simplifics to the fourth-
arder fotm

1 (V2 R2) (V2 4 KD 0 =0 (5.9)
where
. B 4 o B
b=y (red)i 2 R = svyip i+ 4
ar=142905 Baalt~ 2kt pn),
Demi By 2 (ki )z] 68
o 271 2 ¥ w!
Pos Blhis dplu 2K
* we’ Gy

As will be shown in Sect. 11, the lengths /, and J; are the viscous and thermal
boundary layer thicknesses. For air at normal pressure and temperature /, and J,
_ are both approximately 0.007 cm at 1000 cps, quite small compared to most

wavelengths. In this case, when %/, and kJ, are small, the two propagation
constants are approximately

ko {t i [ L 41 = 1) k1]

: (5.9)
141

]\'h-% "—[h"’ .

The solution of Eq. (5.7) is 8 =6, + 6,, where the two components are solu-
tions of the separated equations (V7% + #7) 8, =0 and (V2 -+ £}) 6, =0, respectively.
The exact forms and magnitudes of the two components will be determined by
the boundary conditions, as will be shown in the next Division (Sect. 11). Pro-
pagation constant k, corresponds to the usual wave motion, with a small attenua-
tion caused by both viscosity and heat conduction. Constant %, corresponds to
thermal boundary waves near a conducting, surface; these waves are negligible
more than a distance /, away from the surface.

The corresponding acoustic velocity and pressure can be obtained once 6,
and 6, have been found. Fer example the velocity is

w =, ,1‘;‘;; 1 ; (ko 1,)?) grad 6, + 71‘1:2[1 i .;—y(ks L)Y grad6,. (5.10)
The first and last terms are important only near boundary surfaces, the first
forming the viscous boundary layer and the third the thermal boundary layer.
The second term represents the main contribution to the acoustic field away from
these boundeary layers.
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6. Internal energy losses. For some purposes it may-be sufficient to compute
the energy lost per unit volume of the fluid, as a quadratic function of the acoustic
variables, rather than to work out the solution of Eqs. (5.0) and (5.7). In this
Division we consider the losses in the main body of the medium; in the next
Division {Sect. 11) we treat losses near a boundary surface. We also confine our
discussion to the effects of viscosity and heat conduction on a homogencous fluid
at rest.

The average rate of energy loss per unit volume of the fluid can be calculated
from the time average of the “‘loss function”

L= — Z P.U;,
17
where, from Sect. 1, F,; are elements of the stress tensor and U; clemients of the
strain tensor. Separating

Pi=(F+$)0;;— Dy
into its pressure and viscous components, we have
L=—(B+pV u+ 30,0, (6.1)
)

If we consider harmonic time dependence (time factor e~**%) only and disregard
second-order terms, the time average of By V- wu is zero. Since also V- u =
— (1/0) (06/2t), we can write the average acoustic energy loss per unit volume

per second as
= [p 8} , [wo -
Ly [9 o el (6.2)
i

The first term represents the average work done on the medium by the acoustic
pressure, which results in an increase of the internal energy of the medium and
a “leakage’’ of energy due to heat conduction. The heat leakage produces a
phase difference between the pressure p and the density § so that the time average
of p(66/at) differs from zero.

When the time factor is e~*®! the first term in (6.2) can be expressed as
% Re [—iwp* 8/p] where p* is the complex conjugate of p. Intreducing the
compressibility » = (6/op) of the fluid, we obtain

I =}Re(=iwx|p)£D; 5:'[21),.,0',.4 ; (6.7)
¥ av

The viscous dissipation function D can be calculated directly from the acoustic
velocity field, and needs no further discussion here. The evaluation of the com-

pressibility x, however, requires further discussion.
From the linearised equations (3.5) to (3.9) we have {when ¢ is zero and 5,

is constant)
0 T K - V2pa — k2 Kp 0
ot 0Cy 0Cp’ | (
{ { ).4)
}

b

@ ¢

p=c2b+ —0; k=7
~where we haveused 0 = (p/oC,) +(T'6/C,) and have discarded ihe term contain-

ing Ko as being cof order K% By eliminating o in these two equations we obtain
a first-order expression for the compressibility

L LG e tod ;
o T 05



