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Preface

Since in a standard situation (e.g. in the symmetric case), any Cp-contrac-
tion semigroup (and hence its generator) on a Hilbert space is uniquely de-
termined by the associated quadratic form, it is reasonable to describe the
properties of the semigroup and its generator by using functional inequalities
of the quadratic form. In particular, if the associated form is a Dirichlet form,
then the corresponding semigroup is (sub-) Markovian. The purpose of this
book is to present a systematic account of functional inequalities for Dirich-
let forms and applications to Markov semigroups (or Markov processes in a
regular case).

The functional inequalities considered here only involve in the Dirichlet
form and one or two norms of functions, and can be easily illustrated in many
cases. On the other hand, these inequalities imply plentiful analytic properties
of Markov semigroups and generators, which are related to various behaviors
of the corresponding Markov processes. For instance, the Poincaré inequality
is equivalent to the exponential convergence of the semigroup and the existence
of the spectral gap. Moreover, the Gross log-Sobolev inequality is equivalent to
Nelson’s hypercontractivity of the semigroup and is strictly stronger than the
Poincaré inequality. So, it is natural for us to ask for more spectral information
and semigroup properties from more general functional inequalities. This is
the starting point of the book.

- In this book, we introduce functional inequalities to describe:

(i) the spectrum of the generator: the essential and discrete spectrums,
high order eigenvalues, the principal eigenvalue, and the spectral gap;

(ii) the semigroup properties: the uniform integrability, the compactness,
the convergence rate, and the existence of density;

(iii) the reference measure and the intrinsic metric: the concentration, the
isoperimetric inequality, and the transportation cost inequality.

For reader’s convenience and for the completeness of the account, we sum-
marize some necessary preliminaries in Chapter 0. Corresponding to various
levels of spectral and semigroup properties, Chapters 1, 3, 4, 5 and 6 focus
on several different functional inequalities respectively: Chapter 1 and Chap-
ter 5 introduce the above mentioned Poincaré and log-Sobolev inequalities
respectively, Chapter 6 the interpolations of these two inequalities, Chapter
3 the super Poincaré inequality, and Chapter 4 the weak Poincaré inequal-
ity. Each of these chapters presents a correspondence between the underlying
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functional inequality and the properties of the semigroup and its generator,
as well as sufficient and necessary conditions for the functional inequality to
hold. Moreover, the general results are illustrated by concrete exarnples, in
particular, examples of diffusion processes on manifolds and countable Markov
chains. These chapters are relatively (although not absolutely) independent,
so that one may read in one’s own order without much trouble.

Chapter 2 is devoted to diffusion processes on Riemannian manifolds and
applications to geometry analysis. In particular, the estimation of the first
eigenvalue is related to the Poincaré inequality, while the results concerning
gradient estimates, the Harnack inequality and the isoperimetric inequality
will be used in the sequel to illustrate other functional inequalities. The results
included in §2.2 concerning the first eigenvalue have been introduced in a recent
monograph [47] by Professor Mu-Fa Chen. Chen’s monograph emphasizes the
main idea of the study which is crucial for understanding the machinery of the
work, while the present book provides the technical details which are useful
for further study. Finally, in Chapter 7 we establish functional inequalities
for three infinite-dimensional models which have been studying intensively in
stochastic analysis and mathematical physics.

At the end of each chapter (except Chapter 0), some historical notes and
open questions for further studies are addressed. The notes are not intended
to summarize the principal results of each paper cited but merely to indicate
the connection to the main contents of each chapter in question, while the
open problems are listed mainly based on my own interests. Thus, these notes
are far from complete in the strict sense. At the end of the book, a list of
publications and an index of main notations and key words are presented for
reader’s reference. These references are presented not for completeness but for
a usable guide to the literature. I regret that there might be a lot of related
publications which have not been mentioned in the book.

Due to the limitation of knowledge and the experience of writing, I would
like to apologize in advance for possible mistakes and incomplete accounts
appeared in this book, and to appreciate criticisms and corrections in any
sense.

I would like to express my deep gratitude to my advisors Professor Shi-
Jian Yan and Professor Mu-Fa Chen for earnest teachings and constant helps.
Professor Chen guided me to the cross research field of probability theory and
Riemannian manifold, and emphasized probabilistic approaches in research,
in particular, the coupling methods which he had worked on intensively. Our
fruitful cooperations in this direction considerably stimulated other work in-
cluded in this book. During the past decade I also greatly benefited from col-
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laborations and communications with Professors M. Réckner, A. Thalmaier,
V. 1. Bogachev, F.-Z. Gong, K. D. Elworthy, M. Cranston and X.-M. Li. In
particular, the work concerning the weak Poincaré inequality and applications
is due to effective cooperations with Professor M. Rockner. At different stages
I received helpful suggestions and encouragements from many other mathe-
maticians, in particular, Professors S. Aida, S. Albeverio, D. Barkry, D. Chaifi,
D.-Y. Chen, T. Couhlon, S. Fang, M. Fukushima, G.-L. Gong, L. Gross, E.
Hsu, C.-R. Hwang, W.S. Kendall, R. Leandre, M. Ledoux, Z.-H. Li, Z.-M. Ma,
P. Malliavin, Y.-H. Mao, S.-G. Peng, E. Priola, M.-P. Qian, I. Shigekawa, D.
Stroock, K.-T. Sturm, Y.-L. Sun, J.-L. Wu, L. Wu, J.-A. Yan, T.-S. Zhang,
Y.-H. Zhang and X.-L. Zhao. I would also like to thank Professor Yu-Hui
Zhang, Mr Wei Liu and graduate students in our group for reading the draft
and checking errors.

Finally, it is a pleasure to acknowledge the generous support of this work
by the National Natural Science Foundation of China (1002510, 10121101), the
Teaching and Research Awarded Project for Outstanding Young Teachers, and
the 973-Project.

Feng-Yu Wang
Beijing, June 2004
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Chapter 0

Preliminaries

In this chapter we briefly recall some necessary preliminaries of the book from
Dirichlet forms, Markov processes, spectral theory and Riemannian geometry.
Results included in this part are well-known and fundamental in these fields.
§0.1 and §0.2 are mainly summarized from [137], most results in §0.3 can be
found in [225] and [155], and §0.4 is mainly selected from [33] and [35].

0.1 Dirichlet forms, sub-Markov semigroups and
generators

Let us start with some basic facts on semigroups, resolvents and generators.
Let (B, ||-]|) be a real Banach space. A pair (L, (L)) is called a linear operator
on B if Z(L) is a linear subspace of B and L : Z(L) — B is a linear map. We
sometimes simply denote the operator by L. The operator L is called closed if
its graph {(f,Lf): f € (L)} is closed in B x B. A linear operator (L, Z(L))
is called closable if the closure of its graph is the graph of a linear operator
(L, 2(L)) which is called the closure of (L, 2(L)).

Definition 0.1.1 A family {P;},5, of linear operators on B with Z(F;) = B
for all t > 0 is called a strongly continuous (or Cy-) contraction semigroup on
B, if '

() lmFBf=Ff=f  fe€B

2) |l == sup{l|Pfll : fFE€B, | fII <1} L1, ¢

(3) P.P; = Pys, t,s 2 0.

For a given Cp-contraction semigroup {P;}:>0 (simply denoted by P; in
the sequel), define

A\
o

2(L) = {feB: %%%(Ptf ~ f) exists in B,

Lf=lm>(Pf-]), fe2(D)
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Then (L, 2(L)) is a linear operator on B, which is called the (infinitesimal)
generator of P;. The following well-known result provides a complete charac-
terization for generators of Cy-contraction semigroups (see e.g. [225]).

Theorem 0.1.1 (Hille-Yoshida Theorem) A linear operator (L, Z(L)) is the
generator of a Co-contraction semigroup if and only if

(1) L is densely defined, i.e. Z(L) is dense in B.

(2) For any A > 0, (A — L) is invertible and ||(A — L)1 < 271
In this case the corresponding semigroup is uniquely determined by L and is
denoted by P; = e'*', and L is closed.

Let (L, Z(L)) be the generator of a Cy-contraction semigroup F;. We have

Rf:=(A-L)f = / e NP, fds, feB, A>0.
0

We call {R), : A > 0} the resolvent of L or P;, see §0.3 for this notion of linear
operators on complex Banach spaces.

Now, let us consider B := H, a real Hilbert space with inner product (,).
Then an operator (L, 2(L)) provides a bilinear map & : 9(L) x 2(L) — R
with &(f,9) := —(Lf,g) for f,g € P(L). In general, (&, 2(&£)) is called a
bilinear form on H if (&) is a linear subspace of Hand & : 2(&)x 2(£) — H
is a bilinear map. If moreover &(f,f) = 0 for f € 2(&), then (&, 2(&)) is
called a positive definite form on H. For a bilinear form (&, 2(&)), we define

its symmetric part by &(f,g) = %(é?(f, 9)+&(g, 1)), f,9 € 2(&). Moreover,
let & (f,9) :=olf,9) +&(f,9),f,.9 € Z(&),a >0

Definition 0.1.2 Let (&, 2(&)) be a densely defined positive definite form
on H.

(1) (&, 2(&)) is called symmetric if &(f,g) = &(g, f), f,9 € Z(&).

(2) (&,2(&)) is called closed if 2(&) is complete under the norm é”ll/ 2,

(3) (&,2(&)) is called a coercive closed form on H if it is closed and there
exists a constant K > 0 such that

|61(f,9)| < K& (f, V619,92,  f,9€ 2(&). (0.1.1)

Condition (0.1.1) is called the weak sector condition.
The following result gives a correspondence between the coercive closed
forms and the generators of Cy-contraction semigroups.

Theorem 0.1.2 (1) Let (&, 2(&)) be a coercive closed form. Define

P(L):={f € 2(&): the map &(f, ) : Z(&) — R is continuous under || - ||},
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and for f € D(L) define Lf € H via —(Lf,g) = &(f,g) for allg € D(&). Then
L is the generator of a Co-contraction semigroup P; with resolvent {Rx}x>o
satisfying

RA(H) C 2(€) and &\(Raf.g) =(f9), [feH,ge2(&),A>0.
(0.1.2)

In particular, (L, Z(L)) satisfies the weak sector condition: there exists K > 0
such that

‘((1_L)fag>| SKml_L)faf)((l_L)gag% f,gE@(L) (013)

(2) If (L, 2(L)) satisfies (0.1.3) and generates a Co-semigroup, then there
exists a unique coercive closed form (€, D(€)) such that Z(&) is the comple-
tion of P(L) with respect to @Z‘ll/ ? and

éa(f,g)*_——<Lf7g>, frge-@(L)1

Furthermore, the resolvent {R)}xo satisfies (0.1.2).

Finally, let us consider the Markovian setting. Let (E, %, 1) be a measure
space and let H := L2(y), the set of all measurable rea] functions which are
square-integrable with respect to u, that is, letting #(E) be the set of all
measurable real functions on E, we have

220 = {1 € B(B) : () = /E P < 0},

We write f < g or f < g if the corresponding inequality holds p-a.e.

Definition 0.1.3 (1) A bounded linear operator P : L(u) — L?(u) is called
sub-Markovian if 0 < Pf < 1for all f € L?(u) with 0 < f < 1. If furthermore
P1 = 1 then P is called a Markov operator. A semigroup {P:}t>0 is called
a sub-Markov (resp. Markov) semigroup if each P is sub-Markovian (resp.
Markovian).

(2) A closed densely defined linear operator (L, 2(L)) on L2 (1) is called a
Dirichlet operator if (Lf,(f—1)*) < 0forall f € @(L). If moreover 1 € 9(L)
and L1 = 0 then L is called a conservative Dirichlet generator.

(3) A coercive closed form (&, 2(&)) on L?(u) is called a Dirichlet form if
for any f € (&), one has ft Al € 2(&) and

Ef+frALf-ftAl) >0, Ef—fTALf+fTAL) >0, (0.1.4)

A Dirichlet form (&, 2(£)) is called conservative if 1 € 2(€) and &(f,1) =
&(1,f)=0for all fe 9(&).
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Proposition 0.1.3 (1) If (&, 2(&)) is a Dirichlet form then so is its sym-
metric part (€, D(£)).

(2) A symmetric closed form (&, 2(&)) is a Dirichlet form if and only if
for any f € 9(&) one has ft A1 € D(&) and

EFTALT AL E(F, ). (0.1.5)

(3) A symmetric closed form (&, 2(&)) is a Dirichlet form if and only if
for any T : R — R with T(0) = 0 and |T'(z) — T(y)| < |z — y| for all z,y € R,
one has To f € P(&) and &(T o f,To f) < &(f, f) for all f € D(&).

(4) Let (&, 2(&)) be a Dirichlet form. If f € D(&) and g € L?(p) satisfies
lgl < |f1:l9(@) — 9@)| < |f () — FW)I, then g € D(E) and &(g,9) < E(f, f).

Theorem 0.1.4 Let (L, Z(L)) generate a Co-contraction semigroup {P;}+>0,
and let {Rx}x>0 be the corresponding resolvent. Then the following are equiv-
alent.

(1) L is a Dirichlet operator (resp. conservative Dirichlet operator).

(2) {P;}t>0 is sub-Markovian (resp. Markovian).

(3) For each A > 0, ARy, is sub-Markovian (resp. Markovian).
If (L,2(L)) satisfies the weak sector condition (0.1.3) and (&, D(&)) is the
associated coercive closed form, then they are also equivalent.

(4) For any f € 9(&) one has ft AL € D(E) and E(f+FT AL F—FHAL) 2
0 (resp. moreover 1 € 2(&) with £(1, f) = 1 for all f € D(£)).

Corollary 0.1.5 Let (&, 2(&)) be a coercive closed form associated to the
generator (L, D(L)), the semigroup {P;}1>0 and the resolvent {Rj}xso. Let
Py (resp. R3) be the adjoint operator (see Definition 0.3.2 below) of P, (resp.
R)) on L2(u) fort > 0 (resp. A > 0), and let (L*, 2(L*)) be the corresponding
generator. Then the following are equivalent.

(1) (€,2(&)) is a Dirichlet form (resp. conservative Dirichlet form).

(2) L and L* are Dirichlet operators (resp. conservative Dirichlet operators).

(3) {Pi}t>0 and {P}}iz0 are sub-Markovian (resp. Markovian).

(4) ARy and AR} are sub-Markovian (resp. Markovian) for each A > 0.

In applications, & is often explicitly defined on a smaller domain 2(&)
so that (&£, 2(&)) is not closed. To determine a closed form, one needs to
find a closed extension of (&, 2(€)). To this end, we introduce the notion of
closability of the form.

Definition 0.1.4 A positive definite bilinear form (&, 2(&)) is called closable
if it has a closed extension (&', 2(&£")), i.e. (&, 2(&")) is a closed form with
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Proposition 0.1.6 Let (&, 2(&)) be a positive definite bilinear form satis-
fying the weak sector condition (0.1.1).

(1) (&,2(&)) is closable if and only if for any &-Cauchy sequence {f,} C
2(&) (fie. E(fa~ fms fn — fm) = 0 as n,m — o0) with f, — 0(n — o) in
L%(p), one has &(fp, frn) — 0(n — o0).

(2) (&,2(&)) is closable if and only if so is its symmetric part (€, D(&)).

(3) If (£, 2(&)) is closable, then it extends uniquely to the completion of
(&) with respect to the norm &*, denoted by (&, 9(&)). If moreover 2(&)
is dense in L?(p) then (&, D(£)) is the smallest coercive closed form extending
(€,2(&)), and is called the closure of (&, 2(&£)).

Proposition 0.1.7 (1) Let (L, 2(L)) be a negative definite operator on
L?(u), satisfying the weak sector condition (0.1.3). Define

éo(f:.g) = “(Lf’g% f,gE@(L)
Then (£, 2(L)) is closable on L?(u).

(2) Let (6®,9(6%))),k € N, be closable (resp. closed) positive definite
symmetric forms on L?(u). Let

D(E) = {f e 2(6®): ié’(’“)(f, f) < oo},
k=1

k>1

E(f.9):=Y ¢®(f,9),  fge (&)
k=1

Then (€, 9(&)) is closable (resp. closed) on L?(p).
(3) Let (€, 2(&)) be a coerceive closed form and {f,} C (&) such that
{&(fns fn)} is bounded and f, — f € L?(u) as n — oo, then feP(&) and
Jim E(f, £) = £(f,£) < lim &(fu, fn).

n—00

Finally, the following result (see [91, Theorem 1.5.2]) enables us to extend
the domain of a Dirichlet form.

Theorem 0.1.8 Let (£, 2(&)) be a symmetric Dirichlet form on L2 (u). For

any measurable function f, if there exists an &-Cauchy sequence {fn} C 2(&)

such that fn — f p-a.c., then the limit &(f, f) = nlim E(fn, fn) exists and
—0

does not depend on the choice of {fn}. If moreover f € L?(p) then f € 2(8).

According to Theorem 0.1.8 we may extend the Dirichlet form to the ex-
tended domain

De(&):={f € B(E): fn— f p-a.e. for some



6 Chapter 0  Preliminaries

&-Cauchy sequence {f,} C 2(&)},

where Z(FE) is the set of all measurable real functions on E. Throughout the
book, all real or complex functions are assumed to be finite.

0.2 Dirichlet forms and Markov processes

In this section we introduce the correspondence between Dirichlet forms and
Markov processes, i.e. to show how these two objects determine each other.
We first recall the notion of Markov processes.

Let E be a Hausdorff topological space with the Borel o-field #, that is,
the o-field induced by open sets. A stochastic process with state space E
describes the behavior of a particle randomly moving on E. If the particle is
allowed to move out from E, then we add a new point A to stand for the “died
state” of the particle. Thus, the whole state space becomes Ea := E|J{A}
equipped with the natural one-point compaction topology, i.e. a subset G of
EA is open if it is either an open set in F or a set containing A with compact
complement. If in particular F itself is compact, then A is isolated. Let Fa
be the corresponding Borel o-field. For any function f on F, we extend it to
EA by letting f(A) = 0.

For simplicity, we only consider the standard Markov process defined on
the canonical path space over E. A map w. : [0,00) — Ep is called a canonical
path if it is right continuous and has left limit at each point ¢ > 0 with w; # A.
Let 2 denote the set of all canonical pathes over E such that w; = A for all
t > &(w) :=inf{t > 0:w; = A}, where ¢ is called the lifetime. For each t > 0,
let

zi: 2 > E; r(w) = wy, wE N,

and let # = o(zs : s < t) be the smallest o-field on 2 such that z, is
measurable for all s < t. Let F := o(x¢ : t > 0). The family {ZF:}ixo is
called the natural filtration of the path process over E. To make the filtration
right continuous, let £, = Ns>t Fs>t = 0. In the sequel, whenever (12, )
is equipped with a probability measure P, the filtration under consider is
automatically extended to its completion with respect to IP.

Definition 0.2.1 A family of probability measures {P* : « € EA} on
(2, #) is called a Markov process on E, if

(1) P*(zp € A) = 6;(A) := 1a(z),x € Epr, A € Fa, where 14 is the
indicator function of A. In particular, P2 (z; = A,t > 0) = 1.

(2) For any I' € Foo, P'(I") is Fa-measurable.
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(3) For any s,t > 0 and any z € E, A € Fa,
P?(zs1s € AlFs) = P¥ (2445 € Alzs), P*-a.s., (0.2.1)

where P*(-|z;) is the conditional probability of P* under the o-field induced
by zs. The equation (0.2.1) is called the Markov property (with respect to the
filtration {#}). If for any =z € F one has P*(£ =c0) =1, then we may drop A
and call {P*:x € E'} a nonexplosive (or conservative) Markov process on E.
Given a Markov process {P* : z € Ea}, and given v € S?(Ep), the set
of all probability measures on Ea, let P¥ := / P®v(dz), which is called the

Ena
distribution of the Markov process starting from v.

In this book, we only consider the time-homogeneous Markov process for
which the Markov property (0.2.1) can be written as

]P’x(.’L‘H.s € Al'gs) = sz(xt € A), P*-a.8.,7 € En, A€ Fp,s,t =20
(0.2.2)
For a time-homogenous Markov process {P* : z € E5}, define

Pof(z) = B= f(z) = /9 fe)dP®,  fe B.(E),zcE,

where %, (FE) is the set of nonnegative measurable functions on E. Since
fF(A) = 0 by convention, we have

P f(z) = E* f(zt)111<¢), z€E,t20.

It is easy to see from (0.2.2) that {P.};>o is a sub-Markov semigroup on
By(E) .= {f € B(E) : ||f| :=sup|f| < oo}, which is a Banach space and the
norm is called the uniform norm.

To introduce the definition of strong Markov processes, let us recall the
notion of a stopping time. A mapping 7 : 2 — [0, 0] is called a {.%;}-stopping
time if {7 < t} € & for all t > 0. Given a stopping time 7 we define the
o-field

F, :={F€900:Fﬂ{7'<t}€9t, t >0}

Definition 0.2.2 A time-homogenous Markov process {P® : z € EA} is
called a strong Markov process if for any {%#,}-stopping time 7, any v € FP(En)
and any A € £,

PY(zirr € A|F;) = PP (2, € A), PY-a.s. on {7 < oo}. (0.2.3)

Now, let us connect Markov processes with Dirichlet forms.



