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Preface

The miniaturisation of sensors has been made possible by advances in the technolo-
gies originating in the semiconductor industry, and the emergent field of microsensors
has grown rapidly during the past 10 years. The term microsensor is now commonly
used to describe a miniature device that converts a nonelectrical quantity, such as pres-
sure, temperature, or gas concentration, into an electrical signal. This book basically
reports on the recent developments in, firstly, the miniaturisation of a sensor to produce a
microsensor; secondly, the integration of a microsensor and its microelectronic circuitry
to produce a so-called smart sensor; and thirdly, the integration of a microsensor, a
microactuator, and their microelectronic circuitry to produce a microsystem.

Many of the microsystems being fabricated today employ silicon microtechnology and
are called microelectricalmechanical systems or MEMS in short. Consequently, the first
part of this book concentrates on the materials and processes required to make different
kinds of microsensors and MEMS devices. The book aims to make the reader familiar
with these processes and technologies. Of course, most of these technologies have been
derived from those currently employed in the semiconductor industry and so we also
review the standard microelectronics technologies used today to produce silicon wafers,
process them into discrete devices or very large-scale integrated circuits, and package
them. These must be used when the microelectronics is being integrated to form either
a hybrid device, such as a muldtichip module (MCM), or a fully integrated device, such
as a smart sensor. We then describe the new techniques that have been developed to
make microsensors and microactuators, such as bulk and surface silicon micromachining,
followed by the emerging technology of microstereolithography that can be used to form
true three-dimensional micromechanical structures.

The reader is now fully prepared for our description of the different types of microsen-
sors made today and the way in which they can be integrated with the microelectronics
to make a smart device (e.g. an electronic eye, electronic nose, or microtweezers) or
integrated with a microactuator to make a microsystem. Several of these chapters have
been dedicated to the important topic of IDT microsensors, that is, surface acoustic wave
devices that possess an interdigital transducer and so can be used to sense a wide variety
of signals from mechanical to chemical. This type of microsensor is attractive, not only
because it offers both high sensitivity and compatibility with the microelectronics industry
but also because it can be operated and even powered by a wireless radio frequency link.
The latter overcomes the initial constraints of communicating with small, low energy
budget, and even mobile MEMS - now referred to as micromachines!



xiv PREFACE

Our aim has been to write a book that serves as a text suitable both for an advanced
undergraduate course and for a master’s programme. Some of the material may well be
familiar to students of electrical engineering or electronics. However, our comprehensive
treatment will make it equally familiar to mechanical engineers, physicists, and materials
scientists.

We have provided more than 10 appendices to aid the reader and serve as a source of
reference material. These appendices explain the key abbreviations and terms used in the
book, provide suggestions for further reading, give tables of the properties of materials
important in microsensors and MEMS, and finally provide a list of the web sites of major
journals and active institutions in this field. In addition, this book is aimed to be a valuable
reference text for anyone interested in the field of microsensors and MEMS (whether they
are an engineer, a scientist, or a technologist) and the technical references at the end of
each chapter will enable such readers to trace back the original material.

Finally, much of the material for this book has been taken from short courses prepared
by the authors and presented to students and industrialists in Europe, North America, and
the Far East. Their many valuable comments have helped us to craft this book into its
final form and so we owe them our thanks. The authors are also grateful to many of their
students and colleagues, in particular Professor Vasundara V. Varadan, Dr. K. A. Jose,
Dr. P. Xavier, Mr. S. Gangadharan, Mr. William Suh, and Mr. H. Subramanian for their
valuable contributions.

Julian W. Gardner
Vijay K. Varadan
Osama O. Awadelkarim
September 2001
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1

Introduction

1.1 HISTORICAL DEVELOPMENT OF
MICROELECTRONICS

The field of microelectronics began in 1948 when the first transistor was invented.
This first transistor was a point-contact transistor, which became obsolete in the 1950s
following the development of the bipolar junction transistor (BJT). The first modern-
day junction field-effect transistor (JFET) was proposed by Shockley (1952). These two
types of electronic devices are at the heart of all microelectronic components, but it
was the development of integrated circuits (ICs) in 1958 that spawned today’s computer
industry.

IC technology has developed rapidly during the past 40 years; an overview of the
current bipolar and field-effect processes can be found in Chapter 4. The continual
improvement in silicon processing has resulted in a decreasing device size; currently,
the minimum feature size is about 200 nm. The resultant increase in the number of
transistors contained within a single IC follows what is commonly referred to as Moore’s
law. Figure 1.1 shows that in just 30 years the number of transistors in an IC has risen
from about 100 in 1970 to 100 million in 2000. This is equivalent to a doubling of
the number per chip every 18 months. Figure 1.1 plots a number of different common
microprocessor chips on the graph and shows the clock speed rising from 100 kHz to
1000 MHz as the chip size falls. These microprocessors are of the type used in common
personal computers costing about €1000 in today’s prices’.

Memory chips consist of transistors and capacitors; therefore, the size of dynamic
random access memories (DRAM) has also followed Moore’s law as a function of time.
Figure 1.2 shows the increase of a standard memory chip from 1 kB in 1970 to 512 MB
in 2000. If this current rate of progress is maintained, it would be possible to buy for
€1000 a memory chip that has the same capacity as the human brain by 2030 and a
memory chip that has the same brain capacity as everyone in the whole world combined
by 2075! This phenomenai rise in the processing speed and power of chips has resulted
first in a computer revolution and currently in an information revolution. Consequently,
the world market value of ICs is currently worth some 250 billion euros, that is, about
250 times their processing speed in hertz.

'1 euro (€) is currently worth about 1 US dollar.



