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PREFACE TO THE SECOND EDITION

The objective of this book is to offer students of science and engineering a
concise, general, and easy-to-understand account of some of the most important
concepts and methods of classical and computational solid mechanics. The
classical part is mainly a re-issue of Fung's Foundations of Solid Mechanics,
with a major addition to the modern theories of plasticity, and a major revision
of the theory of large elastic deformation with finite strains. The computational
part consists of five new chapters, which focus on numerical methods to solve
many major linear and nonlinear boundary-value problems of solid mechanics.

We hold the principle of easy-to-understand for the readers as an objective
of our presentation. We believe that to be easily understood, the presentation
must be precise, the definitions and hypotheses must be clear, the arguments
must be concise and with sufficient details, and the conclusion has to be drawn
very carefully. We strive to pay strict attention to these requirements. We be-
lieve that the method must be general and the notations should be unified.
Hence, we presented the tensor analysis in general coordinates, but kept the
indicial notations for tensors in the first twelve chapters. In Chapters 13-22,
however, the dyadic notations of tensors and the notations for matrix opera-
tions are used to shorten the formulas.

This book was written for engineers who invent and design things for hu-
man kind and want to use solid mechanics to help implement their designs and
applications. It was written also for engineering scientists who enjoy solid me-
chanics as a discipline and would like to help develop and advance the subject
further. It was further designed to serve those physical and natural scientists
and biologists and bioengineers whose activities might be helped by classical
and computational solid mechanics. For example, biologists are discovering
that the functional behavior of cells depends on the stresses acting on the
cell. It is widely recognized that the molecular mechanics of the cell must be
developed as soon as possible.

Solid mechanics deals with deformation and motion of “solids.” The dis-
placement that connects the instantaneous position of a particle to its position
in an “original” state is of general interest. The preoccupation about particle
displacements distinguishes solid mechanics from that of fluids.

This book begins with an introductory chapter containing a brief sketch of
history, an outline of some prototypes of theories, and a description of some

vii
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more complex features of solid mechanics. In Chapter 2, an introduction to
tensor analysis is given. The bulk of the text from Chapters 3 to 12 is con-
cerned with the classical theory of elasticity, but the discussion also includes
the thermodynamics of solid, thermoelasticity and plasticity. Chapters 13-16
extend the discussion to finite deformation theory, viscoelasticity, viscoplas-
ticity, coupled thermal, mechanical and electric processes in thermodynamic
nonequilibrium based on functional and/or state-variable approaches and to
their applications to electro-thermo-viscoelastic/plastic problems. Fluid me-
chanics basically is excluded, but methods that are common to both fluid and
solid mechanics are emphasized. Both dynamics and statics are treated; the
concepts of wave propagation are introduced in an early stage. Variational
calculus is emphasized since it provides a unified point of view and is useful
in formulating approximate theories and computational methods. The large
deflection theory of plates presented in the concluding section of Chapter 13
illustrates the elegance of the general approach to the large deformation theory.

Chapters 17 to 22 are devoted to computational solid mechanics to deal
with linear, nonlinear, and inhomogeneous problems. Chapter 17 develops the
incremental theory in considerable detail. It is recognized that the incremental
approach is the most practical approach. Chapter 18 is devoted to numerical
methods, with the finite element singled out for detailed discussion and its ap-
plication to elasticity. Chapter 19 presents the calculation methods based on
the mixed and hybrid variational principles, illustrating the broadening of the
computation power with less restrictive (or weaker) hypotheses in formulat-
ing the variational principle. Chapter 20 deals with finite element methods of
plates and shells, making the computation methods accessible to the analysis
of the structures of aircraft, marine architectures, land vehicles, and shell-like
structures in human beings, animals, plants, earth, and space. Chapter 21 deals
with finite element modeling of nonlinear elasticity, viscoelasticity, plasticity,
viscoplasticity and creep. Finally the book concludes with Chapter 22 on the
Meshless Local Petrov—Galerkin and Eshelby—Atluri Methods, alternatives to
the conventional finite element methods. Thus, a broad sweep of modern, ad-
vanced topics are covered. Since Chapters 17-21 are independent of Chapters
13-16, readers may skip the latter in the first reading.

Overall, this book lays emphasis on general methodology. It prepares the
students to tackle new problems. However, as it was said in the original preface
of the Foundations of Solid Mechanics, no single path can embrace the broad
field of mechanics. As in mountain climbing, some routes are safe to travel,
others more perilous; some may lead to the summit, others to different vistas
of interest; some have popular claims, others are less traveled. In choosing a
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particular path for a tour through the field, one is influenced by the curriculum,
the trends in literature, and the interest in engineering and science. Here, a
particular way has been chosen to view some of the most beautiful vistas in
classical and computational mechanics. In making this choice, we have aimed
at straightforwardness and interest, and practical usefulness in the long run.

Holding the book to a reasonable length did not permit inclusion of many
numerical examples, which have to be supplemented through problems and ref-
erences. Fortunately, there are many excellent references to meet this demand.
We have presented an extensive bibliography in this book, but we suggest that
the reader consult the review journal Applied Mechanics Reviews (AMR) pub-
lished by the American Society of Mechanical Engineers International since
1947, for current information. The reader is referred to the periodic in-depth
reviews of the literature in specific issues of AMR.

We are indebted to many authors and colleagues as acknowledged in the
preface of the Foundations of Solid Mechanics. In the preparation of the present
edition, we are especially indebted to Professors Satya Atluri and Theodore
Pian. We would like to record our gratitude to many colleagues who wrote
us to discuss various points and sent us errata in the Foundations of Solid
Mechanics and Classical and Computational Solid Mechanics, especially to Drs.
Satya N. Atluri, Pao-Show D. Cheng, Shun Cheng, Ellis H. Dill, Clive L. Dym,
J. B. Haddow, Manohar P. Kamat, Hans Krumhaar, T. D. Leko, Howard A.
Magrath, Sumio Murakami, Theodore Pian, R. S. Rivlin, William P. Rodden,
Bertil Storakers, Howard J. White, Jr. and John C. Yao. We would also like to
thank Professors Y. Ohashi, S. Murakami and N. Kamiya for translating the
Foundations book into Japanese, Professors Oyuang Zhang, Ma Wen-Hua and
Wang Kai-Fu for translating the Foundations book into Chinese.

We would like to take this opportunity to mention a few of editorial notes:

(1) The bibliography is given at the end of the book.

(2) Equations in each section are numbered sequentially. When referring to
equations in other sections, we use the format (Sec. no:Eq. no), e.g. (5.6:4).

(3) Formulas are a concise way of saying lots of things. The most important
formulas are marked with a triangular star, A. They are worthy of being
committed to memory.

Yuan-Cheng Fung
Pin Tong
Xiachong Chen
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