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Preface

F or a long time, I wondered if the recently popularized
time-frequency and wavelet transforms were merely academic exercises. Do applied engineers
and scientists really need signal processing tools other than the FFT? After 10 years of working
with engineers and scientists from a wide variety of disciplines, I have finally come to the con-
clusion that, so far, neither the time-frequency nor wavelet transform appear to have had the rev-
olutionary impact upon physics and pure mathematics that the Fourier transform has had.
Nevertheless, they can be used to solve many real-world problems that the classical Fourier
transform cannot.

As James Kaiser once said, “The most widely used signal processing tool is the FFT, the
most widely misused signal prbcessing tool is also the FFT.” Fourier transform-based techniques
are effective as long as the frequency contents of the signal do not change with time. However,
when the.frequency contents of the data samples evolte over an observation period, time-fre-
quency or wavelet transforms should be considered. Specifically, the time-frequency transform
is suited for signals with slow frequency changes (narrow instantaneous bandwidth), such as
sounds heard during an engine run-up or run-down, whereas the wavelet transform is suited for
signals with rapid changes (wide instantaneous frequency bandwidth), such as sounds associated
with engine knocking. The success of applications of the time-frequency and wavelet transforms
largely hinges on understanding their fundamentals. It is the goal of this book to provide a brief
introduction to time-frequency and wavelet transforms for those engineers and scientists who
want to use these techniques in their applications, and for students who are new to these topics.

Keeping this goal in mind, I have included the two related subjects, time-frequency and
wavelet transforms, under a single cover so that readers can grasp the necessary information and
come up to speed in a short time. Professors can cover these topics in a single semester. The co-
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existence of the time-frequency and wavelet approaches in one book, I believe, will help com-
parative understanding and make complementary use easier. '

This book can be viewed in two parts. While Chapters Two through Six focus on linear
transforms, mainly the Gabor expansion and the wavelet transform, Chapters Seven through
Nine are dedicated to bilinear time-frequency representations. Chapter Ten can be thought of as
a combination of time-frequency and time-scale (that is, wavelets) decomposition. The presenta-
tion of the wavelet transform in this book is aimed at readers who need to know only the basics
and perhaps apply these new techniques to solve problems with existing commercial software. It
may not be sufficient for academic researchers interested in creating their own set of basic func-
tions by techniques other than the elementary filter banks introduced here.

All chapters start with the discussion of basic concepts and motivation, then provide theo-
retical analysis and, finally, numerical implementation. Most algorithms introduced in this book
are a part of the software package, Signal Processing Toolset, a National Instruments product.
Visit www . ni . com for more information about this software.

This book is neither a research monograph nor an encyclopedia, and the materials pre-
sented here are believed to be the most basic fundamentals of time-frequency and wavelet analy-
sis. Many theoretically excellent results, which are not practical for digital implementation, have
been omitted. The contents of this book should provide a strong foundation for the time-fre-
quency and wavelet analysis neophyte, as well as a good review tutorial for the more experi-
enced signal-processing reader.

I wrote this book to appeal to the reader’s intuition rather than to rely on abstract mathe-
matical equations and wanted the material to be easily understood by a reader with an engineer-
ing or science undergraduate education. To achieve this, mathematical rigor and lengthy
derivation have been sacrificed in many places. Hopefully, this style will not-unduly offend pur-
ists. .

On the other hand, “Formulas were not invented simply as weapons of intimidation” [22].
In many cases, mathematical language, I feel, is much more effective than plain English. Words
are sometimes clumsy and ambiguous. For me, it is always a joy to refresh my knowledge of
what [ learned in school but have not used since.

_ Some of the material presented in this book is the result of collaborative work which so
greatly profited from the contributions of friends and colleagues that I must mention them. It
was my graduate advisor, Professor Joel M. Morris, who led me into such a fascinating field.
Motivated by the suppression of cross-term interference, in the early 90s the idea of the decom-
position of the Wigner-Ville distribution emerged, which led to a series of interesting results.
With Shidong Li and Kai Chen, the relationship of the most similar dual and the pseudo inverse
was discovered. Based on Wexler and Raz’s periodic discrete Gabor expansion {225], Dapang
Chen and 1 obtained its infinite counterpart which resulted in an interesting time-dependent
spectrum, the time-frequency distribution series, also known as the Gabor spectrogram. To
improve the time-frequency resolution, we also proposed the adaptive Gabor expansion which
turned out to be the same scheme as that employed by the matching pursuit method indepen-
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dently developed by Stéphane Mallat and Zhifeng Zhang during the same time period [172].
With Qinye Yin, such an adaptive decomposition scheme was generalized into the Gaussian
chirplet cases. The fast-refinement algorithm initially appeared when Qinye Yin visited Austin,
Texas. As a result of his insightful observation, the computation of the adaptive Gaussian chirp-
let approximation has been significantly improved. All these years later, I clearly remember a
discussion at Xiang-Geng Xia’s office in Malibu, California, in front of the magnificent beach
there. The subject was the Gabor expansion-based time-varying filter. As a result of that discus-
sion, a few days later Xiang-Geng called me and said, “With a tight frame, the iteration of the
time-varying filter converges!” That memory is indelible.

I would also like to thank Professors Xiang-Geng Xia and Richard G. Baraniuk for their
contributions in Chapter 5 and Section 8.3, respectively.

In a larger sense, this book is the result of the enthusiasm and support from numerous cus-
tomers, colleagues, and friends. I want to take this opportunity to express my sincere thanks to
all of them. Particularly, 1 would like to thank Dr. James Truchard and Jeff Kodosky, the
founders of National Instruments Corporation. It is their great enthusiasm and continuous sup-
port that keep such a “non-profitable” project evolving and making all those interesting applica-
tions take place.

This book has been an on-off project for almost three years and I extend my thanks to Ber-
nard Goodwin at Prentice Hall for his endless patience and generous assistance. There were so
many errors in the original draft that I dare not look at it again. Mahesh Chugani carefully read
the entire manuscript. His numerous comments and suggestions improved the book significantly.

My deepest thanks are reserved for my mother, Yuzhen Wu, and my family: my wife, Jun,

and daughter, Nancy. I am very grateful for their understanding, support, and patience during
this formidable project. '

B+ 5
Shie Qian
Austin, Texas
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CHAPTER 1

Introduction

Due to physical limitations, usually we are only able to
study a system through signals associated with the system rather than physically opening up the
system. For example, physicists and chemists use the spectrum generated by the prism, without
breaking up molecules, to distinguish different types of matter.! Astronomers apply spectra as
well as the Doppler effect, discovered by an Austrian physicist Christian Johann Doppler in
1842, to determine distances to planets that a human being may never be able to reach. Doctors
utilize the electrocardiograph (ECG), without opening up the body, to trace the electrical activity
of the heart and diagnose whether or not a patient suffers from heart problems. Indeed, signal
processing has played a fundamental role in the history of civilization. Prior to World War II,
however, signal processing was primarily a part of physics. Signals that scientists and engineers
dealt with were mainly analog by nature. It was the sampling theorem, proved by the mathemati-
cian J. Whittaker in 1935 [229] and applied to communication by Claude Shannon in 1949 [46],
that led to a new era of signal processing. Modern signal processing can be thought of as the
combination of physics as well as statistics. Because of the discovery of the sampling theorem
and the advance of the digital computer over the last couple of decades, we are now able to
employ elegant mathematical approaches, such as the virtual prism — Fourier transform, to pro-
cess all different kinds of signals that our ancestors never would have been able to imagine.
Applications of modern signal processing range from the control of the Mars Pathfinder more
than twenty million miles away to the discovery of abnormal cells inside the body.

1. Spectrum analysis was jointly discovered by the German chemist Robert Wilhelm Bunsen (1811 - 1899) and the
German physicist Gustar Robert Kirchhoff (1824 - 1887). Contrary to popular belief, Bunsen had little to do with
the invention of the Bunsen burner, a gas burner used in scientific laboratories. Although Bunsen popularized the
device, credit for its design should go to the British chemist and physicist Michael Faraday (1791 - 1867).
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A fundamental mathematical tool employed in signal processing is a transform. When we
are asked to multiply the Roman numerals LXIV and XXXII, only a few of us will be able to
give the correct answer right away. However, if the Roman numerals are first translated into Ara-
bic numerals, 64 and 32, then all of us can get 2048 immediately. The process of converting the
unfamiliar Roman numerals into common Arabic numerals is a typical example of transforms
(22]. By properly applying transforms, we can simplify calculations or make certain attributes of
the signal explicit.

One of the most popular transforms known to scientists and engineers is the Fourier trans-
form that converts a signal from the time domain to the frequency domain. Two hundred years
ago, during the study of heat propagation and diffusion, Jean Baptiste Joseph Fourier found a
series of harmonically related sinusoids to be useful in representing the temperature distribution
through a body. The method of computing the weight of each sinusoidal function is now known
as the Fourier transform. The Fourier transform can not only benefit the study of heat distribu-
tion, but is also extremely useful for many other mathematical operations, such as solutions to
differential equations. The application of the Fourier transform with which scientists and engi-
neers are most familiar may be convolution theory. By applying the Fourier transform, one can
convert time-consuming convolutions into more efficient multiplications.

In fact, the Fourier transform is not simply a mathematical trick to make calculations eas-
ier; it also acts as a mathematical prism to beak down a signal into a group of waveforms (differ-
ent frequencies), as a prism breaks up light into a color spectrum. With the help of the Fourier
transform, we can interpret radiation from distant galaxies, diagnose a developing fetus, and
make inexpensive cellular phone calls. With the establishment of quantum mechanics, the sig-
nificance of Fourier’s discovery becomes even more obvious. By using the Fourier transform,
for instance, we can quantitatively describe a fundamental and inecapable property of the world
—the Heisenberg uncertainty principle. That is, in certain pairs of quantities, such as the position
and velocity of a particle, cannot both be predicted with complete accuracy.

The Fourier transform is so powerful that people tend to apply it everywhere without
noticing one fundamental difference between the mathematical prism and a real prism. The
spectrum produced by the prism in the morning is different from that in the evening. Using a
fancy word, we may say that the prism gives instantaneous spectra. Using a prism to examine
spectra of light, there is no need for the information about light that existed a million years ago
and the light that will be there tomorrow. However, this is not the case for the Fourier transform.
To compute the Fourier transform, we not only need previous information, but also information
that has not yet occurred. The spectrum computed by the Fourier transform is the spectrum aver-
aged over an infinitely long time before the present to an infinitely long time after the present!

Figure 1-1 illustrates two linear chirp signals. Each is a time reversed version of the other.
While frequencies of the signal on the left plot increase with time, frequencies of the signal on
the right decrease with time. Although the frequency behavior of the two signals is obviously
different, their frequency spectra computed by the Fourier transform, as shown in Figure 1-2, are
identical. The Fourier transform preserves all information about the time waveform (if it did not,



we could not reconstruct the signal from the transform), but information about time or space is
buried deep within the phases, which is beyond our comprehension.

o linear chirp reversed linear chirp
05- I | 1 "’ 0.5- [ ' 5 l
‘ i Hit o (<.‘
\\m 1l* oot
' H“ i ,:!. (TN o
05+ ( ! 0.5+ q
1.0+ 1.0 i T T V D 7 T T T 1
UD U'l 02 03 04 05 UB |J7 IJB US TU 00 01 02 03 04 05 06 07 08 09 10

Figure 1-1 The linear chirp signal in the plot on the right is a time reversed version of the signal
in the plot on the left. While frequencies of the chirp signal on the left increase with time, frequen-
cies of the signal on the right decrease with time.
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Figure 1-2 Although the two linear chirp signals in Figure 1-1 have completely different time
waveforms, their frequency spectra are identical. The Fourier transform preserves all information
about the time waveform (if it did not, we could not reconstruct the signal from the transform), but
information about time or space is buried deep within the phases, which is beyond our comprehen-

sion.

Figure 1-3 depicts the spectrum of an engine sound (the corresponding time waveform is
illustrated in the top plot of Figure 1-4). When listening to this signal, we can clearly identify
several knocking sounds caused by out of phase firing inside the engine. As indicated by the
wavelet transform, the second plot in Figure 1-4, the knocking sound is actually quite strong. To
compute the Fourier transform, we have to include the signal before knocking takes place and
also the signal after the knocking ends. What the spectrum computed by using the Fourier trans-
form tells us are the frequencies contained in the entire time waveform, not the frequencies at a
particular time instant. The Fourier transform provides the signal’s average characteristics.
Although the amplitude of engine knock sounds could be rather large in a very short time period,
the energy of the sound, compared to the entire background noise, is negligible. Consequently,
there will be no obvious signatures in the spectrum to show the presence of engine knocking.
The Fourier transform smears the signal’s local behavior globally. “The Fourier transform is
poorly suited to very brief signals, or signals that change suddenly and unpredictably; yet in sig-
nal processing, brief changes often carry the most interesting information” [22].
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Figure 1-3 Because the energy of the engine knocking sound is relatively small, the presence of
engine knocks is completely overwhelmed in the averaged spectra computed by the Fourier trans-
form.
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Figure 1-4 While engine knock sounds are completely concealed in the background noise in the
time waveform plot (top), the wavelet transform (second from the top) clearly indicates the exist-
ence of engine defects.

Although most natural spectra are time dependent (for example, the light during the morn-
ing is different than that during the evening), the Fourier transform makes “changing frequency”
unthinkable. As Gabor wrote, “even experts could not at times conceal an uneasy feeling when it
came to the physical interpretation of results obtained by the Fourier method” [113].

The shortcoming of the Fourier transform has been recognized for a long time. The devel-
opment of Fourier’s alternatives, involving a great many individuals, started at least a half cen-
tury ago. The first two important articles, dealing with the limitation of the Fourier transform,
appeared right after World War II: one by Dennis Gabor in 1946 (who later received the Nobel
Prize for the invention of holography) [113] and the other by J. Ville in 1948 [219]. Since the



result obtained by Ville was similar to the one introduced by Eugene Wigner (who received the
Nobel Prize for the discoveries concerning the theory of the atomic nucleus and elementary par-
ticles) in the area of quantum mechanics in 1932 [226], traditionally Ville’s method is named the
Wigner-Ville distribution.

The initial reaction to neither Gabor nor Ville’s work was enthusiastic. The difficulty asso-
ciated with the Gabor expansion was that the sets of elementary functions that are suitable for
time-frequency analysis in general do not form orthogonal bases. The problem with the Wigner-
Ville distribution has been the co-called cross-term interference that makes the resulting presen-
tation difficult to be interpreted. It was two sets of papers, Claasen and Mecklenbriiuker [91] and
Bastiaans [72], which both appeared in the early 1980’s, that triggered great interest in revisiting
Gabor and Ville’s pioneer work. Since then, there has been a tremendous amount of activities
and numerous developments. Some of them appear to be reaching a level of maturity for real
applications.

The recognition of the wavelets transform is much more recent, though a similar method-
ology can be traced as early as the beginning of the twentieth century [305]. Wavelets are not a
“bright new idea” but concepts that have existed in other forms in many different fields. For
instance, the numerical implementation of the wavelet transform is nothing more than the well-
established filter banks. As Stéphane Mallat wrote, “This wavelet theory is truly the result of a
dialogue between scientists who often met by chance, and were ready to listen... this is a partic-
ularly sensitive task (mentioning who did what), risking aggressive replies from forgotten scien-
tific tribes” [27]. “Tracing the history of wavelets is almost a job for an archaeologist” [22].

The set of basis functions employed by Fourier, sine and cosine functions, not only is the
mathematical model of the most fundamental natural phenomena — the wave, but also is a solu-
tion of differential equations.? Unfortunately, this is not the case for time-frequency and wavelet
transforms. Neither time-frequency nor wavelet transforms will likely have the revolutionary
impact upon science and engineering that the Fourier transform has had. However, the time-fre-
quency and wavelet transforms do offer many interesting features that the Fourier transform
does not possess. '

In addition to detecting engine knocks, for example, the wavelet transform is also success-
fully used for train wheel diagnosis. It has been found that one of the main causes of train acci-
dents was the result of defective wheels and bearings. Hence, on-line train wheel and bearing
diagnoses are exceptionally important for avoiding potential catastrophes. The parameter that
engineers believe can be used to effectively detect hidden flaws in wheels and bearings is varia-
tions of railroad track. Defective wheels and bearings usually will generate an impulse like noise

2. It would be hard to exaggerate the significance of the differential equation to the history of civilization. It was the
differential equation that enabled Sir Issac Newton to use the current information, such as position, velocity, and
acceleration, to predict the future. Newton’s discovery led the French mathematician and astronomer Pierre
Simon Laplace to believe, “Nothing would be uncertain to it, and the future, like the past, would be present
before its eyes.” Because of such successful application of the differential equation, Laplace imagined a single
formula that would describe the motion of every object in the universe for all time.
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as the train moves on the track, making abnormal frack variations. Such noise could be effec-
tively filtered out by the wavelet transform.
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Figure 1-5 Displacement of the railroad track during the time that eight wheels pass over a strain
gauge, and the corresponding wavelet transform. There is no clear signature between the normal
and abnormal wheels in the time waveform (the upper plot). However, in the wavelet transform do-
main (the lower plot), we can readily identify a potential problem at the fifth wheel (between x =
500 and x = 550).

Figure 1-5 illustrates a typical train wheel on-line testing result. When a wheel is far away
from the strain gauge mounted beneath the track, the corresponding track displacement is small.
It increases as the train wheel approaches the strain gauge. The displacement reaches a maxi-
mum when a wheel is right above the strain gauge. The plot on the top of Figure 1-5 shows the
displacement history during the time that eight wheels pass the strain gauge. While the X-axis
describes the time index, the Y-axis indicates the magnitude of track displacement. Each bump
‘corresponds to one wheel passing over the strain gauge mounted underneath the railroad track.
Obviously, there is no clear signature between the normal and abnormal wheels in the time
waveform. However, in the wavelet transform domain, the plot on the bottom of Figure 1-5, we
can readily identify a potential problem at the fifth wheel (between x = 500 and x = 550). The
wavelet transform-based on-line diagnosis system is expected to substantially reduce potential
train accidents caused by defective wheels or bearings.

Another interesting application of the wavelet transform is for detecting oil leakage. One
of the most challenging tasks in an oil field is on-line pipeline leakage monitoring. This is partic-
ularly true concerning incidents directly caused by organized oil theft. This is not only an eco-
nomiic loss for the oil company, but also environmental pollution, a public issue.

When a leakage incident occurs, the oil pressure in the vicinity of the leakage point drops
rapidly. Such a drop is presumably propagated in all directions along the pipeline. Consequently:



1. Oil pressure decreases at both the inlet and outlet

2. The oil flow rate at the outlet decreases, while the oil flow rate at the inlet increases

Based on the time difference of the pressure drops observed at the inlet and outlet, conceptually,
the leakage location can then be determined by

length of pileline + pressure wave velocity X time difference (a1
5 :

Figure 1-6 depicts the layout of the pressure and flow meters. Note that when both
conditions 1 and 2 mentioned previously are simultaneously satisfied, all other combinations
can be excluded from the leakage. For instance, the decrease of pressure and flow rate at both
ends can be considered as the result of the inlet pump slowing down. Conversely, increased pres-
sure and flow rate indicates the pump is speeding up.

{
flow meters __

~ pressure meters . =

Figure 1-6 Qil leakage will cause pressures at both the outlet and inlet to decrease, the flow rate
at the outlet to decrease, and the flow rate at the inlet to increase.

It is said that one invents with intuition and one proves with logic. This is certainly true in
this application. The idea is straightforward but the implementation is very challenging. The
main difficulties include:

1. Synchronization of all pressure and flow meters that typically are 60 km apart.

2. Variation of pressure wave velocity. The pressure wave velocity is related to temperature,
the density of the medium, as well as the elasticity of the pipe material. To facilitate oil
movement, the raw oil is often heated at each station, especially in cold weather. Due to
the non-uniform temperature distribution, the pressure wave velocity is not constant. Con-
sequently, the actual formula for estimating the location of the leakage is much more
involved than that which one may anticipate (e.g., Eq. (1.1)).

3. Background noise. Compared to the main oil flow, the leakage usually is negligible.
Therefore, the rapid changes of pressure caused by incidents of leakage often are not
noticed.
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Figure 1-7 A typical pressure signal. Although there is a drop caused by a leakage in the vicinity
of 31,000, there is no obvious indication in the time waveform (Data provided by Zhuang Li, Col-
lege of Engineering, Tianjin University, China).

Figure 1-7 illustrates a typical oil pressure signal. Although there is a drop caused by leak-
age in the vicinity of 31,000, there is no obvious indication in the time waveform. However, by
applying the wavelet transform.> one can accurately determine the time instant of the pressure

drop.
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Figure 1-8 The upper plot is the wavelet transform of the signal at the pipeline inlet, whereas the
lower plot shows the wavelet transform of the signal at the pipeline outlet. There were two incidents
of leakage from the pipeline. The first one occurred between 3:00 and 3:18 am and the second
was between 3:24 and 3:44 am (Data provided by Zhuang Li, College of Engineering, Tianjin Uni-
versity, China).

Figure 1-8 depicts the wavelet transforms of signals recorded between 3:00 to 4:00 am on
April 13, 2001. The upper plot shows the wavelet transform of the signal at the pipeline inlet,
whereas the lower plot is the wavelet transform of the signal at the pipeline outlet. As indicated
in the wavelet transform domain, there were two incidents of leakage from the pipeline. The first
one occurred between 3:00 and 3:18 am and the second was between 3:24 and 3:44 am. For the

3. Due to the time accuracy required in this application. the wavelet transform must be time-shift invariant.



