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Preface

A revolution occurred quietly in the development of physics—or, more accu-
rately, of science—in the last three decades. The revolution touches upon
every discipline in both the natural and social sciences. We are referring to the
birth of a new science—nonlinear science—which, for the sake of presenta-
tion, may be divided into six parts: fractals, chaos, pattern formation, sol-
itons, cellular automata, and complex systems.

Yet, in spite of all the excitement about this new science, there is not a sin-
gle textbook covering all these topics. To remedy this situation and in view of
the diversity of the subject, a number of pioneers and experts were invited to
write about their own fields of research. The result is a textbook intended for
advanced undergraduates and graduate students, which is also suitable for
self-study. The materials contained in this book have been test taught in
classrooms in universities, and in summer and winter schools. Examples and
homework problems are included in most chapters.

Emphasis is placed on fractals, chaos, pattern formation, and solitons,
which form Parts I to IV in the book. Special topics, including cellular
automata, turbulence, and complex systems, are grouped in Part V. Part I to
Part IV can be studied independently of each other, whereas Part V can be
ignored in a first reading, except that Chapter 15 is a useful supplement to
Part I11.

Although most of the apphcatlons in this book are taken from examples in
the physical sciences, the general principles and theories expounded are defi-
nitely applicable to other branches of science. The book is thus of use to stu-
dents and researchers not just in physics but also in, for example, chemistry,
biology, astronomy, meteorology, geology, mathematics, computer science,
engineering, medicine, economics, and ecology. The multidisciplinary nature
of nonlinear science makes it the ideal course for broadening the perspective
and education of students.

I am grateful to the contributors and the publisher for their professional
skills and patience in making this book possible. For discussion and encour-
agement I want to thank numerous colleagues, in particular, Armin Bunde,
David Campbell, Patricia Cladis, James Crutchfield, Herman Cummins, .
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John Holland, Alfred Hiibler, Stuart Kauffman, Yuji Kodama, Mitsugu
Matsushita, Michael Nauenberg, Ru-Pin Pan, Gene Stanley, Harry Swinney,
and Wing-Yim Tam. [ am indebted to Marilyn Lam and Charlene Lam for
contributing to the artwork and providing the sketch on page ii, and for a
lot of other things.

San Jose Lui Lam
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1
Introduction

Lui Lam

1.1 A Quiet Revolution

Quantum mechanics and relativity, the two important discoveries in physics
developed at the beginning of this century, are well recognized as revolutions.
These two revolutions present unexpected concepts and insights by going
beyond the classical domains (Fig. 1.1). New results are obtained in quan-
tum mechanics when one goes to the microscopic level (< 10~8 cm) and, in
the case of relativity, the speed of the object has to be close to that of light
(~10'° cmys).

Here comes a new branch of science—nonlinear science—which, like quan-
tum mechanics and relativity, delivers a whole set of fundamentally new ideas
and surprising results. Yet, unlike quantum mechanics and relativity, non-
linear science covers systems of every scale, and objects moving with any
speed; that is, the whole area displayed in Fig. 1.1. Then, by the same stan-
dard, nonlinear science is more than qualified to be called a revolution. The
fact that nonlinear science delivers within the conventional system sizes
and speed limits should not be counted as negative toward its novelty but,
on the contrary, in view of its wide applicability, makes nonlinear science
more important and powerful as a true revolution. In particular, nonlinear
science can be studied with daily macroscopic systems with ordinary tools,
such as a camera or a copying machine, making it accessible to almost
everybody.

If nonlinear science appears to be a somewhat quiet revolution, it is per-
haps due to its wide scope of coverage. The important works were done by so
many researchers and accumulated over such a long period of time that it was
hard for a single person or a group to call a press conference. Or, following a
long scientific tradition, no one bothered to call a press conference.

For pedagogical purposes, nonlinear science may be divided into six areas
of study, namely, fractals, chaos, pattern formation, solitons, cellular autom-
ata, and complex systems. The common theme underlying this diversity of
subjects is the nonlinearity of the systems under study.



