LUI LAM EDITOR

INTRODUCTION TO

NONLINEAR PHYSICS

非线性物理学导论

Springer-Verlag 老果图出出版公司

Introduction to Nonlinear Physics

Springer

New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore

Tokyo

Lui Lam
Department of Physics
San Jose State University
San Jose, CA 95192-0106
USA

Library of Congress Cataloging-in-Publication Data Introduction to nonlinear physics / Lui Lam, editor.

p. cm.
Includes bibliographical references and index.

ISBN 0-387-94758-2 (alk. paper)

1. Nonlinear theories. 2. Mathematical physics. I. Lam, Lui.

QC20.7.N6I67 1996 530.1'55252—dc20

96-14764

Printed on acid-free paper.

© 1997 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the People's Republic of China only and not for export therefrom. Reprinted in China by Beijing World Publishing Corporation, 1999

ISBN 0-387-94758-2 Springer-Verlag New York Berlin Heidelberg SPIN 10536582

书 名: Introduction to Nonlinear Physics

作 者: L. Lam (ed.)

中 译 名: 非线性物理学导论

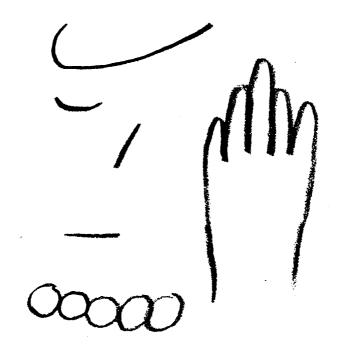
出 版 者: 世界图书出版公司北京公司

印刷者:北京中西印刷厂

发 行: 世界图书出版公司北京公司 (北京朝内大街 137 号 100010)

开 本: 1/24 711×1245

印 张: 18


出版年代: 1999年11月

书 号: ISBN 7-5062-1465-2/O·274

版权登记: 图字 01-1999-1796

定 价: 67.00 元

世界图书出版公司北京公司已获得 Springer-Verlag 授权在中国大陆独家重印发行。

A complex system (Charlene Lam, 1987).

Lui Lam Editor

Introduction to Nonlinear Physics

With 264 Figures

Preface

A revolution occurred quietly in the development of physics—or, more accurately, of science—in the last three decades. The revolution touches upon every discipline in both the natural and social sciences. We are referring to the birth of a new science—nonlinear science—which, for the sake of presentation, may be divided into six parts: fractals, chaos, pattern formation, solitons, cellular automata, and complex systems.

Yet, in spite of all the excitement about this new science, there is not a single textbook covering all these topics. To remedy this situation and in view of the diversity of the subject, a number of pioneers and experts were invited to write about their own fields of research. The result is a textbook intended for advanced undergraduates and graduate students, which is also suitable for self-study. The materials contained in this book have been test taught in classrooms in universities, and in summer and winter schools. Examples and homework problems are included in most chapters.

Emphasis is placed on fractals, chaos, pattern formation, and solitons, which form Parts I to IV in the book. Special topics, including cellular automata, turbulence, and complex systems, are grouped in Part V. Part I to Part IV can be studied independently of each other, whereas Part V can be ignored in a first reading, except that Chapter 15 is a useful supplement to Part III.

Although most of the applications in this book are taken from examples in the physical sciences, the general principles and theories expounded are definitely applicable to other branches of science. The book is thus of use to students and researchers not just in physics but also in, for example, chemistry, biology, astronomy, meteorology, geology, mathematics, computer science, engineering, medicine, economics, and ecology. The multidisciplinary nature of nonlinear science makes it the ideal course for broadening the perspective and education of students.

I am grateful to the contributors and the publisher for their professional skills and patience in making this book possible. For discussion and encouragement I want to thank numerous colleagues, in particular, Armin Bunde, David Campbell, Patricia Cladis, James Crutchfield, Herman Cummins,

vi Preface

John Holland, Alfred Hübler, Stuart Kauffman, Yuji Kodama, Mitsugu Matsushita, Michael Nauenberg, Ru-Pin Pan, Gene Stanley, Harry Swinney, and Wing-Yim Tam. I am indebted to Marilyn Lam and Charlene Lam for contributing to the artwork and providing the sketch on page ii, and for a lot of other things.

San Jose

Lui Lam

Contents

Pro	Preface	
1	Introduction Lui Lam	1
	1.1 A Quiet Revolution	1
	1.2 Nonlinearity	2
	1.3 Nonlinear Science	4
	1.3.1 Fractals	4
	1.3.2 Chaos	5
	1.3.3 Pattern Formation	6
	1.3.4 Solitons	6
	1.3.5 Cellular Automata	7
	1.3.6 Complex Systems	8
	1.4 Remarks	9
	References	10
	art I Fractals and Multifractals Fractals and Diffusive Growth Thomas C. Halsey	15
	·	1.0
	2.1 Percolation	16
	2.2 Diffusion-Limited Aggregation	17
	2.3 Electrostatic Analogy	20
	2.4 Physical Applications of DLA	22
	2.4.1 Electrodeposition with Secondary Current Distribution	24
	2.4.2 Diffusive Electrodeposition	27
	Problems	28
	References	28

3	Multifractality Thomas C. Halsey	30
	3.1 Definition of $\tau(q)$ and $f(\alpha)$	30
	3.2 Systematic Definition of $\tau(q)$	32
	3.3 The Two-Scale Cantor Set	33
	3.3.1 Limiting Cases	35
	3.3.2 Stirling Formula and $f(\alpha)$	36
	3.4 Multifractal Correlations	37
	3.4.1 Operator Product Expansion and Multifractality	38
	3.4.2 Correlations of Iso-α Sets	39
	3.5 Numerical Measurements of $f(\alpha)$	40
	3.6 Ensemble Averaging and $\tau(q)$	41
	Problems	42
	References	43
4	Scaling Arguments and Diffusive Growth	44
	Thomas C. Halsey	
	4.1 The Information Dimension	44
	4.2 The Turkevich-Scher Scaling Relation	45
	4.3 The Electrostatic Scaling Relation	47
	4.4 Scaling of Negative Moments	50
	4.5 Conclusions	
	Problems	52
	References	52
P	art II Chaos and Randomness	
5	5 Introduction to Dynamical Systems	55
_	Stephen G. Eubank and J. Doyne Farmer	
	5.1 Introduction	55
	5.2 Determinism Versus Random Processes	55
	5.3 Scope of Part II	57
	5.4 Deterministic Dynamical Systems and State Space	58
	5.5 Classification	61
	5.5.1 Properties of Dynamical Systems	61
	5.5.2 A Brief Taxonomy of Dynamical Systems Models	63
	5.5.3 The Relationship Between Maps and Flows	63
	5.6 Dissipative Versus Conservative Dynamical Systems	67
	5.7 Stability	68
	5.7.1 Linearization	68
	5.7.2 The Spectrum of Lyapunov Exponents	70
	5.7.3 Invariant Sets	71
	5.7.4 Attractors	73

		Contents	1X
	5.7.5 Regular Attractors		75
	5.7.6 Review of Stability		82
	5.8 Bifurcations		82
	5.9 Chaos		89
	5.9.1 Binary Shift Map		90
	5.9.2 Chaos in Flows		92
	5.9.3 The Rössler Attractor		94
	5.9.4 The Lorenz Attractor		97
	5.9.5 Stable and Unstable Manifolds		98
	5.10 Homoclinic Tangle		100
	5.10.1 Chaos in Higher Dimensions		101
	5.10.2 Bifurcations Between Chaotic Attractors		102
	Problems		103
	References		105
6	Probability, Random Processes, and the		
v	Statistical Description of Dynamics		106
	Stephen G. Eubank and J. Doyne Farmer		
	•		106
	6.1 Nondeterminism in Dynamics		107
	6.2 Measure and Probability 6.2.1 Estimating a Density Function from Data		110
	6.2.1 Estimating a Density Function from Data 6.3 Nondeterministic Dynamics		113
	6.4 Averaging		115
	6.4.1 Stationarity		115
	6.4.2 Time Averages and Ensemble Averages		116
	6.4.3 Mixing		120
	6.5 Characterization of Distributions		122
	6.5.1 Moments		122
•	6.5.2 Entropy and Information		133
	6.6 Fractals, Dimension, and the Uncertainty Expone	nt	138
	6.6.1 Pointwise Dimension		139
	6.6.2 Information Dimension		140
	6.6.3 Fractal Dimension		140
	6.6.4 Generalized Dimensions		141
	6.6.5 Estimating Dimension from Data		142
	6.6.6 Embedding Dimension		144
	6.6.7 Fat Fractals		144
	6.6.8 Lyapunov Dimension		145
	6.6.9 Metric Entropy		146
	6.6.10 Pesin's Identity		148
	6.7 Dimensions, Lyapunov Exponents, and Metric En	ıtropy	
	in the Presence of Noise		148
	Problems		149
	References		150

x Contents

7	Modeling Chaotic Systems	152
	Stephen G. Eubank and J. Doyne Farmer	
	7.1 Chaos and Prediction	153
	7.2 State Space Reconstruction	154
	7.2.1 Derivative Coordinates	155
	7.2.2 Delay Coordinates	155
	7.2.3 Broomhead and King Coordinates	157
	7.2.4 Reconstruction as Optimal Encoding	157
	7.3 Modeling Chaotic Dynamics	157
	7.3.1 Choosing an Appropriate Model	157
	7.3.2 Order of Approximation	158
	7.3.3 Scaling of Errors	160
	7.4 System Characterization	162
	7.5 Noise Reduction	163
	7.5.1 Shadowing	164
	7.5.2 Optimal Solution of Shadowing Problem	167
	with Euclidean Norm	168
	7.5.3 Numerical Results	170
	7.5.4 Statistical Noise Reduction	170
	7.5.5 Limits to Noise Reduction	172
	Problems References	174
	References	1,4
	art III Pattern Formation and Disorderly Growth Phenomenology of Growth	179
0	Leonard M. Sander	
	8.1 Aggregation: Patterns and Fractals Far from Equilibrium	179
	8.2 Natural Systems	181
	8.2.1 Ballistic Growth	181
	8.2.2 Diffusion-Limited Growth	183
	8.2.3 Growth of Colloids and Aerosols	190
	Problems	190
	References	190
9	Models and Applications Leonard M. Sander	192
	9.1 Ballistic Growth	192
	9.1.1 Simulations and Scaling	192
	9.1.2 Continuum Models	196
	9.2 Diffusion-Limited Growth	197
	9.2.1 Simulations and Scaling	197
	9.2.2 The Mullins-Sekerka Instability	200
	9.2.3 Orderly and Disorderly Growth	201

	Contents	хi
	0.2.4 Flantonskominal Domanikiana A. Chan Standar	202
	9.2.4 Electrochemical Deposition: A Case Study	203
	9.3 Cluster-Cluster Aggregation Appendix: A DLA Program	205 206
	Problems	208
	References	209
	References	209
Pa	art IV Solitons	
10	Integrable Systems	213
	Lui Lam	
	10.1 Introduction	213
	10.2 Origin and History of Solitons	215
	10.3 Integrability and Conservation Laws	218
	10.4 Soliton Equations and their Solutions	219
	10.4.1 Korteweg-de Vries Equation	219
	10.4.2 Nonlinear Schrödinger Equation	219
	10.4.3 Sine-Gordon Equation	219
	10.4.4 Kadomtsev-Petviashvili Equation	223
	10.5 Methods of Solution	224
	10.5.1 Inverse Scattering Method	224 225
	10.5.2 Bäcklund Transformation	226
	10.5.3 Hirota Method	226
	10.5.4 Numerical Method	227
	10.6 Physical Soliton Systems 10.6.1 Shallow Water Waves	227
	10.6.2 Dislocations in Crystals	228
	10.6.3 Self-Focusing of Light	229
	10.0 Sector occasing of Eight	230
	Problems	230
	References	231
11	Nonintegrable Systems	234
	Lui Lam	
	11.1 Introduction	234
	11.2 Nonintegrable Soliton Equations with Hamiltonian Structures	236
	11.2.1 The θ^4 Equation	236
	11.2.2 Double Sine-Gordon Equation	237
	11.3 Nonlinear Evolution Equations	237
	11.3.1 Fisher Equation	238
	11.3.2 The Damped θ^4 Equation	239
	11.3.3 The Damped Driven Sine-Gordon Equation	240 243
	11.4 A Method of Constructing Soliton Equations	243
	11.5 Formation of Solitons	245
	11.6 Perturbations	473

X11	Contents
AII	Contents

12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300	11.7 Soliton Statistical Mechanics	247
11.7.2 The Sine–Gordon System 251 11.8 Solitons in Condensed Matter 252 11.8.1 Liquid Crystals 252 11.8.2 Polyacetylene 261 11.8.3 Optical Fibers 264 11.9 Conclusions 266 Problems 267 References 268 Part V Special Topics 12 Cellular Automata and Discrete Physics 275 David E. Hiebeler and Robert Tatar 275 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.2.5 Optics 287 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualiz	11.7.1 The θ^4 System	248
11.8 Solitons in Condensed Matter 252 11.8.1 Liquid Crystals 252 11.8.2 Polyacetylene 261 11.8.3 Optical Fibers 266 11.9 Conclusions 266 Problems 267 References 268 Part V Special Topics 12 Cellular Automata and Discrete Physics 275 David E. Hiebeler and Robert Tatar 275 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Vis	11.7.2 The Sine-Gordon System	251
11.8.2 Polyacetylene 261 11.8.3 Optical Fibers 264 11.8.4 Magnetic Systems 266 11.9 Conclusions 266 Problems 267 References 268 Part V Special Topics 12 Cellular Automata and Discrete Physics David E. Hiebeler and Robert Tatar 275 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 13.1 Historical Introduction 296 13.2.1 O		252
11.8.2 Polyacetylene 261 11.8.3 Optical Fibers 264 11.8.4 Magnetic Systems 266 11.9 Conclusions 266 Problems 267 References 268 Part V Special Topics 12 Cellular Automata and Discrete Physics 275 David E. Hiebeler and Robert Tatar 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296	11.8.1 Liquid Crystals	252
11.8.3 Optical Fibers 264 11.8.4 Magnetic Systems 266 11.9 Conclusions 266 References 268 References 268 Part V Special Topics 275 David E. Hiebeler and Robert Tatar 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.2.6 CD Visualization 299 13.3.1 Zeeman's Heart Model: Standard Cell 300 13.3.1 Zeeman's Heart Model: Standard Cell 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		261
11.8.4 Magnetic Systems 266 11.9 Conclusions 266 Problems 267 References 268 Part V Special Topics 275 David E. Hiebeler and Robert Tatar 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.6 Chemical Reactions 289 12.4 Current Sources of Literature 290 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.2.6 CD Visualization 299 13.2.6 CD Visualization 299 13.2.1 Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		
11.9 Conclusions 266 Problems 267 References 268	<u>-</u>	266
Problems 267 References 268 Part V Special Topics 12 Cellular Automata and Discrete Physics 275 David E. Hiebeler and Robert Tatar 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 13.1 Historical Introduction 296 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions <th></th> <th></th>		
Part V Special Topics 12 Cellular Automata and Discrete Physics 275 David E. Hiebeler and Robert Tatar 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 13.1 Historical Introduction 296 13.2. Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.4 CD States 299 13.2.6 CD Visua	·	
12 Cellular Automata and Discrete Physics 275 David E. Hiebeler and Robert Tatar 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Metho	References	268
David E. Hiebeler and Robert Tatar 12.1 Introduction 275 12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 13.1 Historical Introduction 296 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300	Part V Special Topics	
12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		275
12.1.1 A Well-Known Example: Life 277 12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300	12.1 Introduction	275
12.1.2 Cellular Automata 278 12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		277
12.1.3 The Information Mechanics Group 279 12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300	•	278
12.2 Physical Modeling 280 12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		279
12.2.1 CA Quasiparticles 280 12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300	_	280
12.2.2 Physical Properties from CA Simulations 281 12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		280
12.2.3 Diffusion 282 12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		281
12.2.4 Sound Waves 285 12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		282
12.2.5 Optics 287 12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		285
12.2.6 Chemical Reactions 289 12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		287
12.3 Hardware 290 12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		289
12.4 Current Sources of Literature 291 12.5 An Outstanding Problem in CA Simulations 291 Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		290
12.5 An Outstanding Problem in CA Simulations Problems References 294 13 Visualization Techniques for Cellular Dynamata Ralph H. Abraham 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 13.3.1 Zeeman's Heart Model: Standard Cell		291
Problems 292 References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		291
References 294 13 Visualization Techniques for Cellular Dynamata 296 Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		292
Ralph H. Abraham 296 13.1 Historical Introduction 296 13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		294
13.1 Mistorical Introduction 297 13.2 Cellular Dynamical Schemes 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		296
13.2 Cellular Dynamata 297 13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300	13.1 Historical Introduction	296
13.2.1 Dynamical Schemes 297 13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		297
13.2.2 Complex Dynamical Systems 297 13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		297
13.2.3 CD Definitions 297 13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		297
13.2.4 CD States 299 13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		297
13.2.5 CD Simulation 299 13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 300 13.3.1 Zeeman's Heart Model: Standard Cell 300		299
13.2.6 CD Visualization 299 13.3 An Example of Zeeman's Method 13.3.1 Zeeman's Heart Model: Standard Cell 300		299
13.3 An Example of Zeeman's Method 13.3.1 Zeeman's Heart Model: Standard Cell 300		299
13.3.1 Zeeman's Heart Model: Standard Cell 300		300
	13.3.1 Zeeman's Heart Model: Standard Cell	300
		300

		Contents	xiii
	1	3.3.3 Zeeman's Heart Model: Beating	300
	13.4	The Graph Method	300
	1	3.4.1 The Biased Logistic Scheme	301
	1	3.4.2 The Logistic/Diffusion Lattice	301
		3.4.3 The Global State Graph	302
		The Isochron Coloring Method	305
		3.5.1 Isochrons of a Periodic Attractor	305
		3.5.2 Coloring Strategies	305
		Conclusions	306
	Refere	ences	306
14		Laminar Flow to Turbulence rey K. Vallis	308
	14.1 I	Preamble and Basic Ideas	308
	1	14.1.1 What Is Turbulence?	309
		From Laminar Flow to Nonlinear Equilibration	311
	1	14.2.1 A Linear Analysis: The Kelvin-Helmholz Instability	312
		14.2.2 A Weakly Nonlinear Analysis: Landau's Equation	314
		From Nonlinear Equilibration to Weak Turbulence	321
		14.3.1 The Quasi-Periodic Sequence	322
		14.3.2 The Period Doubling Sequence	324
		14.3.3 The Intermittent Sequence	335 337
		14.3.4 Fluid Relevance and Experimental Evidence	341
		Strong Turbulence	341
		14.4.1 Scaling Arguments for Inertial Ranges 14.4.2 Predictability of Strong Turbulence	348
		14.4.3 Renormalizing the Diffusivity	352
		Remarks	355
	Refer		357
15		e Walks: Pattern Formation, Self-Organization, and	359
	Comp Lui L	olex Systems	337
		Introduction	359
	15.1		360
	15.2 15.3	Basic Concepts Continuum Description	361
	15.5	Computer Models	363
	13.4	15.4.1 A Single Walker	363
		15.4.2 Branching	366
		15.4.3 Multiwalkers and Updating Rules	366
		15.4.4 Track Patterns	368
	15.5	Three Applications	371
		15.5.1 Dielectric Breakdown in a Thin Layer of Liquid	371
		15.5.2 Ion Transport in Glasses	375
		15.5.3 Ant Trails in Food Collection	376
	15.6	Intrinsic Abnormal Growth	378

xiv Contents

	15.7	Landscapes and Rough Surfaces	380
		15.7.1 Groove States	382
		15.7.2 Localization-Delocalization Transition	383
		15.7.3 Scaling Properties	387
	15.8	Fuzzy Walks	390
	15.9	Related Developments and Open Problems	393
	15.10	Conclusions	395
	Refere	ences	396
	Appen	ndix: Historical Remarks on Chaos	401
	Micha	ael Nauenberg	
_	4 • 9 4		407
Contributors			407 411
in	Index		

Introduction

Lui Lam

1.1 A Quiet Revolution

Quantum mechanics and relativity, the two important discoveries in physics developed at the beginning of this century, are well recognized as revolutions. These two revolutions present unexpected concepts and insights by going beyond the classical domains (Fig. 1.1). New results are obtained in quantum mechanics when one goes to the microscopic level ($<10^{-8}$ cm) and, in the case of relativity, the speed of the object has to be close to that of light ($\sim10^{10}$ cm/s).

Here comes a new branch of science—nonlinear science—which, like quantum mechanics and relativity, delivers a whole set of fundamentally new ideas and surprising results. Yet, unlike quantum mechanics and relativity, nonlinear science covers systems of every scale, and objects moving with any speed; that is, the whole area displayed in Fig. 1.1. Then, by the same standard, nonlinear science is more than qualified to be called a revolution. The fact that nonlinear science delivers within the conventional system sizes and speed limits should not be counted as negative toward its novelty but, on the contrary, in view of its wide applicability, makes nonlinear science more important and powerful as a true revolution. In particular, nonlinear science can be studied with daily macroscopic systems with ordinary tools, such as a camera or a copying machine, making it accessible to almost everybody.

If nonlinear science appears to be a somewhat quiet revolution, it is perhaps due to its wide scope of coverage. The important works were done by so many researchers and accumulated over such a long period of time that it was hard for a single person or a group to call a press conference. Or, following a long scientific tradition, no one bothered to call a press conference.

For pedagogical purposes, nonlinear science may be divided into six areas of study, namely, fractals, chaos, pattern formation, solitons, cellular automata, and complex systems. The common theme underlying this diversity of subjects is the nonlinearity of the systems under study.