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Preface

The marriage of geometry and analysis, in particular non-linear differential
equations, has been very fruitful. An early deep application of geometric analysis
is the celebrated solution by Shing-Tung Yau of the Calabi conjecture in 1976. In
fact, Yau together with many of his collaborators developed important techniques
in geometric analysis in order to solve the Calabi conjecture. Besides solving
many open problems in algebraic geometry such as the Severi conjecture, the
characterization of complex projective varieties, and characterization of certain
Shimura, varieties, the Calabi-Yau manifolds also provide the basic building blocks
in the superstring theory model of the universe. Geometric analysis has also
been crucial in solving many outstanding problems in low dimensicnal topology,
for example, the Smith conjecture, and the positive mass conjecture in general
relativity.

Geometric analysis has been intensively studied and highly developed since
1970s, and it is becoming an indispensable tool for understanding many parts
of mathematics. Its success also brings with it the difficulty for the uninitiated
to appreciate its breadth and depth. In order to introduce both beginners and
non-experts to this fascinating subject, we have decided to edit this handbook of
geometric analysis. Each article is written by a leading expert in the field and will
serve as both an introduction to and a survey of the topics under discussion. The
handbook of geometric analysis is divided into several parts, and this volume is
the first part.

Shing-Tung Yau has been crucial to many stages of the development of ge-
ometric analysis. Indeed, his work has played an important role in bringing the
well-deserved global recognition by the whole mathematical sciences community
to the field of geometric analysis. In view of this, we would like to dedicate this
handbook of geometric analysis to Shing-Tung Yau on the occasion of his sixtieth
birthday.

Summarizing the main mathematical contributions of Yau will take many
pages and is probably beyond the capability of the editors. Instead, we quote
several award citations on the work of Yau.

The citation of the Veblen Prize for Yau in 1981 says: “We have rarely
had the opportunity to witness the spectacle of the work of one mathematician
affecting, in a short span of years, the direction of whole areas of research.... Few
mathematicians can match Yau’s achievements in depth, in impact, and in the
diversity of methods and applications.”

In 1983, when Yau was awarded a Fields medal, L. Nirenberg described Yau’s
work up to that point:

“You has done extremely deep work in global geometry and elliptic partial



ii Preface

differential equations, including epplications in three-dimensional topology and in
general relativity theory. He is an analyst’s geometer (or geometer’s analyst) with
remarkable technical power and insight. He has succeeded in solving problems on
which progress had been stopped for years.”

More than ten years later, Yau was awarded the Carfoord prize in 1994, and
the citation of the award says:

“The Prize is awarded to ... Shing-Tung Yau, Harvard University, Cam-
bridge, MA, USA, for his development of non-linear techniques in differential ge-
ometry leading to the solution of several outstanding problems.

Thanks to Shing-Tung Yau’s work over the past twenty years, the role and
understanding of the basic partial differential equations in geometry has changed
and expanded enormously within the field of mathematics. His work has had an
impact on areas of mathematics and physics as diverse as topology, algebraic geom-
etry, representation theory, and general relativity as well as differential geometry
and partial differential equations. Yeu is a student of legendary Chinese mathe-
matician Shiing-Shen Chern, for whom he studied at Berkeley. As a teacher he is
very generous with his ideas and he has had many students and also collaborated
with many mathematicians.”

We wish Yau a happy sixtieth birthday and continuing success in many years
to come!

Lizhen Ji

Peter Li
Richard Schoen
Leon Simon
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