Neal Koblitz

A Course in
Number Theory
and Cryptography

Second Edition

T B F I »2m

Z LW ¥ &)
www.wpcbj.com.cn

Springer

Neal Koblitz

0156/Y16
2008.
A Course In

Number Theory
and Cryptography

Second Edition

@ Springer

Neal Koblitz

Department of Mathematics
University of Washington
Seattle, WA 98195

USA

Editorial Board

S. Axler K.A. Ribet

Mathematics Department Department of Mathematics

San Francisco State University University of California, Berkeley
San Francisco, CA 94132 Berkeley, CA 94720-3840

USA USA

axler@sfu.edu ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 11-01, 11T71

With 5 Illustrations.

Library of Congress Cataloging-in-Publication Data
Koblitz, Neal, 1948-
A Course in number theory and cryptography / Neal Koblitz. — 2nd
ed.
p- cm. — (Graduate texts in mathematics ; 114)
Includes bibliographical references and index.
ISBN 0-387-94293-9 (New York : acid-free). — ISBN 3-540-94293-9
(Berlin : acid-free
L. Number theory. 2. Cryptography. 1. Title IL Series.
QA169.M33 1998
512".7—dc20 94-11613

© 1994, 1987 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New
York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed is for-
bidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the People’s
Republic of China only and not for export therefrom.

springeronline.com

Foreword

...both Gauss and lesser mathematicians may be justified in rejoic-
ing that there is one science [number theory] at any rate, and that
their own, whose very remoteness from ordinary human activities
should keep it gentle and clean.

— G. H. Hardy, A Mathematician’s Apology, 1940

G. H. Hardy would have been surprised and probably displeased with
the increasing interest in number theory for application to “ordinary human
activities” such as information transmission (error-correcting codes) and
cryptography (secret codes). Less than a half-century after Hardy wrote
the words quoted above, it is no longer inconceivable (though it hasn’t
happened yet) that the N.S.A. (the agency for U.S. government work on
cryptography) will demand prior review and clearance before publication
of theoretical research papers on certain types of number theory.

In part it is the dramatic increase in computer power and sophistica-
tion that has influenced some of the questions being studied by number
theorists, giving rise to a new branch of the subject, called “computational
number theory.”

This book presumes almost no background in algebra or number the-
ory. Its purpose is to introduce the reader to arithmetic topics, both ancient
and very modern, which have been at the center of interest in applications,
especially in cryptography. For this reason we take an algorithmic approach,
emphasizing estimates of the efficiency of the techniques that arise from the
theory. A special feature of our treatment is the inclusion (Chapter VI) of
some very recent applications of the theory of elliptic curves. Elliptic curves
have for a long time formed a central topic in several branches of theoretical

vi Foreword

mathematics; now the arithmetic of elliptic curves has turned out to have
potential practical applications as well.

Extensive exercises have been included in all of the chapters in order
to enable someone who is studying the material outside of a formal course
structure to solidify her/his understanding.

The first two chapters provide a general background. A student who
has had no previous exposure to algebra (field extensions, finite fields) or
elementary number theory (congruences) will find the exposition rather
condensed, and should consult more leisurely textbooks for details. On'the
other hand, someone with more mathematical background would probably
want to skim through the first two chapters, perhaps trying some of the
less familiar exercises.

Depending on the students’ background, it should be possible to cover
most of the first five chapters in a semester. Alternately, if the book is used
in a sequel to a one-semester course in elementary number theory, then
Chapters III-VI would fill out a second-semester course.

The dependence relation of the chapters is as follows (if one overlooks
some inessential references to earlier chapters in Chapters V and VI):

Chapter I

Chapter 11

71\

Chapter III Chapter V Chapter VI

Chapter IV

This book is based upon courses taught at the University of Wash-
ington (Seattle) in 1985-86 and at the Institute of Mathematical Sciences
(Madras, India) in 1987. I would like to thank Gary Nelson and Douglas
Lind for using the manuscript and making helpful corrections.

The frontispiece was drawn by Professor A. T. Fomenko of Moscow
State University to illustrate the theme of the book. Notice that the coded
decimal digits along the walls of the building are not random.

This book is dedicated to the memory of the students of Vietnam,
Nicaragua and El Salvador who lost their lives in the struggle against
U.S. aggression. The author’s royalties from sales of the book will be used
to buy mathematics and science books for the universities and institutes of
those three countries.

Seattle, May 1987

Preface to the Second Edition

As the field of cryptography expands to include new concepts and tech-
niques, the cryptographic applications of number theory have also broad-
ened. In addition to elementary and analytic number theory, increasing use
has been made of algebraic number theory (primality testing with Gauss
and Jacobi sums, cryptosystems based on quadratic fields, the number field
sieve) and arithmetic algebraic geometry (elliptic curve factorization, cryp-
tosystems based on elliptic and hyperelliptic curves, primality tests based
on elliptic curves and abelian varieties). Some of the recent applications
of number theory to cryptography — most notably, the number field sieve
method for factoring large integers, which was developed since the appear-
ance of the first edition — are beyond the scope of this book. However,
by slightly increasing the size of the book, we were able to include some
new topics that help convey more adequately the diversity of applications
of number theory to this exciting multidisciplinary subject.

The following list summarizes the main changes in the second edition.

o Several corrections and clarifications have been made, and many
references have been added.

e A new section on zero-knowledge proofs and oblivious transfer has
been added to Chapter IV.

o A section on the quadratic sieve factoring method has been added
to Chapter V.

e Chapter VI now includes a section on the use of elliptic curves for
primality testing.

o Brief discussions of the following concepts have been added: k-
threshold schemes, probabilistic encryption, hash functions, the Chor-
Rivest knapsack cryptosystem, and the U.S. government’s new Digital Sig-
nature Standard.

Seattle, May 1994

Contents

Foreword
Preface to the Second Edltlon

Chapter 1. Some Topics in Elementary Number Theory
1. Time estimates for doing arithmetic . . .
2. Divisibility and the Euclidean algorithm .
3. Congruences . e
4. Some applications to factormg

Chapter II. Finite Fields and Quadratic Residues
1. Finite fields . R
2. Quadratic residues and remprocxty

Chapter III. Cryptography .
1. Some simple cryptosystems
2. Enciphering matrices

Chapter IV. Public Key .
1. The idea of public key cryptography
2. RSA . .
3. Discrete log
4. Knapsack

5. Zero-knowledge protocols and obhvxous transfer

Chapter V. Primality and Factoring .
1. Pseudoprimes
2. The rho method .
3. Fermat factorization and factor bases

111
. 117

. 125
. 126
. 138
. 143

vii

12
19
27

31
33
42

54
54
65

83
83
92
97

X Contents

4. The continued fraction method .

5. The quadratic sieve method

Chapter VI. Elliptic Curves
1. Basic facts . Ce
2. Elliptic curve cryptosystems
3. Elliptic curve primality test
4. Elliptic curve factorization .

Answers to Exercises

Index

. 154
. 160

. 167
. . 167
. 177
. 187
. 191
. 200
. 231

I

Some Topics in Elementary
Number Theory

Most of the topics reviewed in this chapter are probably well known to most
readers. The purpose of the chapter is to recall the notation and facts from
elementary number theory which we will need to have at our fingertips
in our later work. Most proofs are omitted, since they can be found in
almost any introductory textbook on number theory. One topic that will
play a central role later — estimating the number of bit operations needed
to perform various number theoretic tasks by computer — is not yet a
standard part of elementary number theory textbooks. So we will go into
most detail about the subject of time estimates, especially in §1.

1 Time estimates for doing arithmetic

Numbers in different bases. A nonnegative integer n written to the base b
is a notation for n of the form (dx_1dk—2 - - - d1do)s, where the d’s are digits,
i.e., symbols for the integers between 0 and b — 1; this notation means that
n=dr_1bF" 1+ di_obF2 + ... 4 d1b+dy. If the first digit dx_; is not zero,
we call n a k-digit base-b number. Any number between b*~! and b* is a
k-digit number to the base b. We shall omit the parentheses and subscript
(-) in the case of the usual decimal system (b = 10) and occasionally in
other cases as well, if the choice of base is clear from the context, especially
when we’re using the binary system (b = 2). Since it is sometimes useful to
work in bases other than 10, one should get used to doing arithmetic in an
arbitrary base and to converting from one base to another. We now review
this by doing some examples.

2 I Some Topics in Elementary Number Theory

Remarks. (1) Fractions can also be expanded in any base, i.e., they
can be represented in the form (dx_1dk—2---dido.d-1d_2---)p. (2) When
b > 10 it is customary to use letters for the digits beyond 9. One could also
use letters for all of the digits.

Example 1. (a) (11001001), = 201.

(b) When b = 26 let us use the letters A—Z for the digits 0—25,
respectively. Then (BAD)26=679, whereas (B.AD)gg = 13-

676
Example 2. Multiply 160 and 199 in the base 7. Solution:

316
403
1254
16030
161554
Example 3. Divide (11001001); by (100111), and divide (HAPPY),
by (SAD)gs.
Solution:
101 To011T KD §45
100111 [T1001001 SAD |HAPPY
100111 GYBE
101101 QOLY
100111 CCAJ
110 MLP

Example 4. Convert 10° to the bases 2, 7 and 26 (using the letters
A7 as digits in the latter case).

Solution. To convert a number n to the base b, one first gets the last
digit (the ones’ place) by dividing n by b and taking the remainder. Then
replace n by the quotient and repeat the process to get the second-to-last
digit d;, and so on. Here we find that

10° = (11110100001001000000), = (11333311); = (CEXHO)s6.

Example 5. Convert m = 3.1415926 - - - to the base 2 (carrying out the
computation 15 places to the right of the point) and to the base 26 (carrying
out 3 places to the right of the point).

Solution. After taking care of the integer part, the fractional part is
converted to the base b by multiplying by b, taking the integer part of the
result as d_;, then starting over again with the fractional part of what you
now have, successively finding d_s, d_3,. ... In this way one obtains:

3.1415926 - - - = (11.001001000011111---); = (D.DRS - - -)46.

1 Time estimates for doing arithmetic 3

Number of digits. As mentioned before, an integer n satifying b*~! <
n < b* has k digits to the base b. By the definition of logarithms, this gives
the following formula for the number of base-b digits (here “[|” denotes
the greatest integer function):

l
o) o,

number of digits = [logbn] +1= [logh

where here (and from now on) “log” means the natural logarithm log..
Bit operations. Let us start with a very simple arithmetic problem, the
addition of two binary integers, for example:

1111
1111000
+ 0011110
10010110

Suppose that the numbers are both k bits long (the word “bit” is short for

“binary digit”); if one of the two integers has fewer bits than the other, we

fill in zeros to the left, as in this example, to make them have the same

length. Although this example involves small integers (adding 120 to 30),

we should think of k as perhaps being very large, like 500 or 1000.

Let us analyze in complete detail what this addition entails. Basically,
we must repeat the following steps k times:

1. Look at the top and bottom bit, and also at whether there’s a carry
above the top bit.

2. If both bits are 0 and there is no carry, then put down 0 and move on.

3. If either (a) both bits are 0 and there is a carry, or (b) one of the bits
is 0, the other is 1, and there is no carry, then put down 1 and move
on.

4. If either (a) one of the bits is 0, the other is 1, and there is a carry, or
else (b) both bits are 1 and there is no carry, then put down 0, put a
carry in the next column, and move on.

5. If both bits are 1 and there is a carry, then put down 1, put a carry in
the next column, and move on.

Doing this procedure once is called a bit operation. Adding two k-bit
numbers requires k bit operations. We shall see that more complicated
tasks can also be broken down into bit operations. The amount of time a
computer takes to perform a task is essentially proportional to the number
of bit operations. Of course, the constant of proportionality — the number
of nanoseconds per bit operation — depends on the particular computer
system. (This is an over-simplification, since the time can be affected by
“administrative matters,” such as accessing memory.) When we speak of
estimating the “time” it takes to accomplish something, we mean finding
an estimate for the number of bit operations required. In these estimates
we shall neglect the time required for “bookkeeping” or logical steps other

4 1. Some Topics in Elementary Number Theory

than the bit operations; in general, it is the latter which takes by far the
most time.

Next, let’s examine the process of multiplying a k-bit integer by an
£-bit integer in binary. For example,

11101
1101
11101
111010
11101
101111001

Suppose we use this familiar procedure to multiply a k-bit integer n
by an ¢-bit integer m. We obtain at most £ rows (one row fewer for each
0-bit in m), where each row consists of a copy of n shifted to the left
a certain distance, i.e., with zeros put on at the end. Suppose there are
¢’ < £ rows. Because we want to break down all our computations into bit
operations, we cannot simultaneously add together all of the rows. Rather,
we move down from the 2nd row to the £'-th row, adding each new row to
the partial sum of all of the earlier rows. At each stage, we note how many
places to the left the number n has been shifted to form the new row. We
copy down the right-most bits of the partial sum, and then add to n the
integer formed from the rest of the partial sum — as explained above, this
takes k bit operations. In the above example 11101 x 1101, after adding the
first two rows and obtaining 10010001, we copy down the last three bits
001 and add the rest (i.e., 10010) to n = 11101. We finally take this sum
10010 + 11101 = 101111 and append 001 to obtain 101111001, the sum of
the ¢/ = 3 rows.

This description shows that the multiplication task can be broken down
into £ — 1 additions, each taking k bit operations. Since ¢/ — 1 < ¢ < ¢,
this gives us the simple bound

Time(multiply integer k bits long by integer £ bits long) < k¢.

We should make several observations about this derivation of an esti-
mate for the number of bit operations needed to perform a binary multipli-
cation. In the first place, as mentioned before, we counted only the number
of bit operations. We neglected to include the time it takes to shift the
bits in n a few places to the left, or the time it takes to copy down the
right-most digits of the partial sum corresponding to the places through
which n has been shifted to the left in the new row. In practice, the shifting
and copying operations are fast in comparison with the large number of bit
operations, so we can safely ignore them. In other words, we shall define a
“time estimate” for an arithmetic task to be an upper bound for the number
of bit operations, without including any consideration of shift operations,

1 Time estimates for doing arithmetic 5

changing registers (“copying”), memory access, etc. Note that this means
that we would use the very same time estimate if we were multiplying a
k-bit binary expansion of a fraction by an £-bit binary expansion; the only
additional feature is that we must note the location of the point separating
integer from fractional part and insert it correctly in the answer.

In the second place, if we want to get a time estimate that is simple
and convenient to work with, we should assume at various points that we’re
in the “worst possible case.” For example, if the binary expansion of m has
a lot of zeros, then ¢ will be considerably less than £. That is, we could
use the estimate Time(multiply k-bit integer by £-bit integer)< k - (number
of 1-bits in m). However, it is usually not worth the improvement (i.e.,
lowering) in our time estimate to take this into account, because it is more
useful to have a simple uniform estimate that depends only on the size of
m and n and not on the particular bits that happen to occur.

As a special case, we have: Time(multiply k-bit by k-bit)< k2.

Finally, our estimate k¢ can be written in terms of n and m if we
remember the above formula for the number of digits, from which it follows
that k = (logzn] + 1< 22 + 1 and £ = [logam] + 1 < 22 +1.

Example 6. Find an upper bound for the number of bit operations
required to compute n!. ,

Solution. We use the following procedure. First multiply 2 by 3, then
the result by 4, then the result of that by 5,..., until you get to n. At the
(4 —1)-th step (j = 2,3,...,n — 1), you are multiplying j! by j + 1. Hence
you have n — 2 steps, where each step involves multiplying a partial product
(i.e., j!) by the next integer. The partial products will start to be very large.
As a worst case estimate for the number of bits a partial product has, let’s
take the number of binary digits in the very last product, namely, in n!.

To find the number of bits in a product, we use the fact that the number
of digits in the product of two numbers is either the sum of the number of
digits in each factor or else 1 fewer than that sum (see the above discussion
of multiplication). From this it follows that the product of n k-bit integers
will have at most nk bits. Thus, if n is a k-bit integer —- which implies that
every integer less than n has at most k bits — then n! has at most nk bits.

Hence, in each of the n—2 multiplications needed to compute n!, we are
multiplying an integer with at most k bits (namely j+ 1) by an integer with
at most nk bits (namely j!). This requires at most nk? bit operations. We
must do this n — 2 times. So the total number of bit operations is bounded
by (n — 2)nk? = n(n — 2)([logzn] + 1)%. Roughly speaking, the bound is
approximately n?(logsn)?2.

Example 7. Find an upper bound for the number of bit operations
required to multiply a polynomial 3 a;z* of degree < n; and a polynomial
3= bjz? of degree < ny whose coefficients are positive integers < m. Suppose
No < ny.

Solution. To compute), +i=v a;b;, which is the coefficient of ¥ in the
product polynomial (here 0 < v < n; + n3) requires at most ny + 1 multi-

6 1. Some Topics in Elementary Number Theory

plications and n, additions. The numbers being multiplied are bounded by
m, and the numbers being added are each at most m?2; but since we have
to add the partial sum of up to ny such numbers we should take nem? as
our bound on the size of the numbers being added. Thus, in computing the
coefficient of ¥ the number of bit operations required is at most

(n2 + 1)(logam + 1)? + na(loga(nam?) + 1).

Since there are n; +n3+ 1 values of v, our time estimate for the polynomial
multiplication is

(n1 4 ng + 1)((n2 + 1)(logam + 1)* + na(logz(nem?) + 1)).

A slightly less rigorous bound is obtained by dropping the 1’s, thereby
obtaining an expression having a more compact appearance:

na(ny + ng) [(logm)?
log?2 log?2

+ (logng + 2log m)) .

Remark. If we set n = n; > ny and make the assumption that m > 16
and m > /n; (which usually holds in practice), then the latter expression
can be replaced by the much simpler 4n?(logzm)?. This example shows that
there is generally no single “right answer” to the question of finding a bound
on the time to execute a given task. One wants a function of the bounds
on the imput data (in this problem, n;, ns and m) which is fairly simple
and at the same time gives an upper bound which for most input data is
more-or-less the same order of magnitude as the number of bit operations
that turns out to be required in practice. Thus, for example, in Example 7
we would not want to replace our bound by, say, 4n?m, because for large
m this would give a time estimate many orders of magnitude too large.

So far we have worked only with addition and multiplication of a k-bit
and an ¢-bit integer. The other two arithmetic operations — subtraction and
division — have the same time estimates as addition and multiplication,
respectively: Time(subtract k-bit from ¢-bit)< max(k,£); Time(divide k-
bit by £-bit)< kl. More precisely, to treat subtraction we must extend our
definition of a bit operation to include the operation of subtracting a 0-
or 1-bit from another 0- or 1-bit (with possibly a “borrow” of 1 from the
previous column). See Exercise 8.

To analyze division in binary, let us orient ourselves by looking at an
illustration, such as the one in Example 3. Suppose k > £ (if k < £, then
the division is trivial, i.e., the quotient is zero and the entire dividend is the
remainder). Finding the quotient and remainder requires at most k — £ + 1
subtractions. Each subtraction requires £ or £+ 1 bit operations;-but in the
latter case we know that the left-most column of the difference will always
be a 0-bit, so we can omit that bit operation (thinking of it as “bookkeeping”
rather than calculating). We similarly ignore other administrative details,
such as the time required to compare binary integers (i.e., take just enough

1 Time estimates for doing arithmetic 7

bits of the dividend so that the resulting integer is greater than the divisor),
carry down digits, etc. So our estimate is simply (k — £+ 1)¢, which is < k¢.

Example 8. Find an upper bound for the number of bit operations it
takes to compute the binomial coefficient ().

Solution. Since () = (,,”,), without loss of generality we may as-
sume that m < n/2. Let us use the following procedure to compute (r?;) =
=n(n—1)(n—2)--- (n—m+1)/(2-3- - - m). We have m—1 multiplications fol-
lowed by m —1 divisions. In each case the maximum possible size of the first
number in the multiplication or division is M{n—1)(n—2)---(n—-m+1) <
n™, and a bound for the second number is n. Thus, by the same argument
used in the solution to Example 6, we see that a bound for the total num-
ber of bit operations is 2(m — 1)m([logan] + 1)2, which for large m and n is
essentially 2m?(logen)?.

We now discuss a very convenient notation for summarizing the situa-
tion with time estimates.

The big-O notation. Suppose that f(n) and g(n) are functions of the
positive integers n which take positive (but not necessarily integer) values
for all n. We say that f(n) = O(g(n)) (or simply that f = O(g)) if there
exists a constant C such that f(n) is always less than C- g(n). For example,
2n? + 3n — 3 = O(n?) (namely, it is not hard to prove that the left side is
always less than 3n?).

Because we want to use the big-O notation in more general situations,
we shall give a more all-encompassing definition. Namely, we shall allow f
and g to be functions of several variables, and we shall not be concerned
about the relation between f and g for small values of n. Just as in the
study of limits as n — o0 in calculus, here also we shall only be concerned
with large values of n.

Definition. Let f(ni, ng,...,n,) and g(ni, n2,...,n,) be two func-
tions whose domains are subsets of the set of all r-tuples of positive inte-
gers. Suppose that there exist constants B and C such that whenever all
of the n; are greater than B the two functions are defined and positive,
and f(ny, na,...,n,) < Cg(ny, na,...,n,). In that case we say that f is
bounded by g and we write f = O(g).

Note that the “=" in the notation f = O(g) should be thought of as
more like a “<” and the big-O should be thought of as meaning “some
constant multiple.”

Example 9. (a) Let f(n) be any polynomial of degree d whose leading
coefficient is positive. Then it is easy to prove that f(n) = O(n¢). More
generally, one can prove that f = O(g) in any situation when f(n)/g(n)
has a finite limit as n — oo.

(b) If € is any positive number, no matter how small, then one can
prove that logn = O(n*) (i.e., for large n, the log function is smaller than
any power function, no matter how small the power). In fact, this follows
because limn_.c,ol—"-"—’1 = 0, as one can prove using ’Hopital’s rule.

ne

8 1. Some Topics in Elementary Number Theory

(c) If f(n) denotes the number k of binary digits in n, then it follows
from the above formulas for k that f(n) = O(logn). Also notice that the
same relation holds if f(n) denotes the number of base-b digits, where b is
any fixed base. On the other hand, suppose that the base b is not kept fixed
but is allowed to increase, and we let f(n,b) denote the number of base-b
digits. Then we would want to use the relation f(n,b) = 0(%’;‘%}).

(d) We have: Time(n - m) = O(logn - logm), where the left hand side
means the number of bit operations required to multiply n by m.

(e) In Exercise 6, we can write: Time(n!) = O((nlogn)?).

(f) In Exercise 7, we have:

Time(z a;zt - Z bjzj) = O(nlng((log m)? + log(min(ny, 'I'lg)))).

In our use, the functions f(n) or f(n;, na,...,n,) will often stand
for the amount of time it takes to perform an arithmetic task with the
integer n or with the set of integers ni, ng,...,n, as input. We will want
to obtain fairly simple-looking functions g(n) as our bounds. When we do
this, however, we do not want to obtain functions g(n) which are much
larger than necessary, since that would give an exaggerated impression of
how long the task will take (although, from a strictly mathematical point
of view, it is not incorrect to replace g(n) by any larger function in the
relation f = O(g)).

Roughly speaking, the relation f(n) = O(n?) tells us that the function
f increases approximately like the d-th power of the variable. For example,
if d = 3, then it tells us that doubling n has the effect of increasing f by
about a factor of 8. The relation f(n) = O(log%n) (we write log®n to mean
(logn)?) tells us that the function increases approximately like the d-th
power of the number of binary digits in n. That is because, up to a constant
multiple, the number of bits is approximately log n (namely, it is within 1
of being logn/log2 = 1.4427logn). Thus, for example, if f(n) = O(log®n),
then doubling the number of bits in n (which is, of course, a much more
drastic increase in the size of n than merely doubling n) has the effect of
increasing f by about a factor of 8.

Note that to write f(n) = O(1) means that the function f is bounded
by some constant.

Remark. We have seen that, if we want to multiply two numbers of
about the same size, we can use the estimate Time(k-bit-k-bit)=0(k?). It
should be noted that much work has been done on increasing the speed
of multiplying two k-bit integers when % is large. Using clever techniques
of multiplication that are much more complicated than the grade-school
method we have been using, mathematicians have been able to find a proce-
dure for multiplying two k-bit integers that requires only O(k log k log log k)
bit operations. This is better than O(k?), and even better than O(k*¢) for
any € > 0, no matter how small. However, in what follows we shall always

1 Time estimates for doing arithmetic 9

be content to use the rougher estimates above for the time needed for a
multiplication.

In general, when estimating the number of bit operations required to
do something, the first step is to decide upon and write down an outline
of a detailed procedure for performing the task. An explicit step-by-step
procedure for doing calculations is called an algorithm. Of course, there
may be many different algorithms for doing the same thing. One may choose
to use the one that is easiest to write down, or one may choose to use the
fastest one known, or else one may choose to compromise and make a trade-
off between simplicity and speed. The algorithm used above for multiplying
n by m is far from the fastest one known. But it is certainly a lot faster
than repeated addition (adding n to itself m times).

Example 10. Estimate the time required to convert a k-bit integer to
its representation in the base 10.

Solution. Let n be a k-bit integer written in binary. The conversion
algorithm is as follows. Divide 10 = (1010); into n. The remainder — which
will be one of the integers 0, 1, 10, 11, 100, 101, 110, 111, 1000, or 1001
— will be the ones digit do. Now replace n by the quotient and repeat the
process, dividing that quotient by (1010), using the remainder as d; and
the quotient as the next number into which to divide (1010)2. This process
must be repeated a number of times equal to the number of decimal digits in
n, which is [,‘7"5110] +1 = O(k). Then we’re done. (We might want to take our
list of decimal digits, i.e., of remainders from all the divisions, and convert
them to the more familiar notation by replacing 0, 1, 10, 11,...,1001 by
0,1,2,3,...,9, respectively.) How many bit operations does this all take?
Well, we have O(k) divisions, each requiring O(4k) operations (dividing a
number with at most k bits by the 4-bit number (1010)2). But O(4k) is the
same as O(k) (constant factors don’t matter in the big-O notation), so we
conclude that the total number of bit operations is O(k) - O(k) = O(k?). If

we want to express this in terms of n rather than k, then since k¥ = O(log n),
we can write

Time(convert n to decimal) = O(log®n).

Example 11. Estimate the time required to convert a k-bit integer n
to its representation in the base b, where b might be very large.

Solution. Using the same algorithm as in Example 10, except dividing
now by the £-bit integer b, we find that each division now takes longer (if
¢ is large), namely, O(kf) bit operations. How many times do we have to
divide? Here notice that the number of base-b digits in n is O(k/£) (see
Example 9(c)). Thus, the total number of bit operations required to do all
of the necessary divisions is O(k/£) - O(k€) = O(k?). This turns out to be
the same answer as in Example 10. That is, our estimate for the conversion
time does not depend upon the base to which we’re converting (no matter
how large it may be). This is because the greater time required to find each
digit is offset by the fact that there are fewer digits to be found.

