E M R & % ¥

PEARSON

Addis
\\ I

Essential .NET

Volume 1: The Common Language Runtime

NET zl:}ﬁﬁ»:

BB AIGE TIBEE

% EAR)

[%] Don Box, Chris Sells %

Essential .NET #5$1E# Don Box mFER

Vol i ; .

Th(: (EiTmeon Language Runtime %ﬁ$ﬂ£\§] CLR ér*i szgiﬁiﬁf u
AL E IR T E M IEME CLR T/EHLH =

Don Box
with Chris Sells

. Educam n
=S

m'f‘@V{’/?;”. W& 74

www.infopower.com.cn

X B R B ® =

Essential .NET

Volume 1: The Common Language Runtime

NET zliJﬁri»:

IR ’\iktﬁﬁl.ﬁfh

(RS ERAR)

T @A L e 1L

Essential .NET Volume 1: The Common Language Runtime

(ISBN 0-201-73411-7)

Don Box , Chris Sells

Copyright © 2003 by Addison-Wesley Publishing Company , Inc.

Original English Language Edition Published by Addison-Wesley Publishing Company , Inc.
All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA
ELECTRIC POWER PRESS, Copyright © 2003.

K E1 AR H Pearson Education $2RUP [H i JHARMZEP ESE N (FHS. I 1EHTBIX
HEHX RSN MERBKR. RIT.
R IREP®EET, FEUMEAFXEHRRPEE BT

A F5 RIS H Pearson Education i h#7%, TAREE REIHE.

LR AEEEREIES: BT 01-2003-2439

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macao SAR).

R Frhie NRICAIEBE A (AR A&, TR AT B A E G O I RAT .

EHEMSE (CIP) #iiE

NET &Jfit #B—¥%: AGEFEBITE/ (B AR, (&) BKAEZFE. —RHE.
—Jbx. G EEFBEM, 2003.11

(BRRHAREERTD

ISBN 7-5083-1806-4

[N.. [I.O/E.O%F. LSS —#FiRit—%3 V. TP393

o [AR A B 4 CIP 3B F (2003) 38 086083 &

M B L RRKRERS
+ #: NET &/t F—%: AFEBEBFEBTE BB
= #*: (3) Don Box, Chris Sells
TR KEN
AR AT : PEEHHER
dnt. dERW S BAKES MBI 100044

Mi%: (010) 88515918 £ HE. (010) 88518169
B Rl ICEENSHR LA
F A& 787X1092 1/16 Ep W 27
2. ISBN 7-5083-1806-4
M W 20031 BIERE R 2003411 55— IKENk]
E ffr: 48.00 JG

IEiRFRE #ENZ R

“r Essential .NET
= Volume 1

The Common Language Runtime

Don Box
with Chris Sells

Foreword

I workED FOR THE World Wide Web Consortium in its early days at the
Massachusetts Institute of Technology (MIT). We decided we needed to
learn about both COM and CORBA, at that time the leading frameworks
for object-oriented programming over the network.

I called our Microsoft representative and asked who he could send to
teach the Consortium staff the fundamentals of COM. I explained that the
Consortium staff were very technical and were interested in the “why” of
things at least as much as the “how.” I explained that we were designing
the next generation Web protocols and knew just about everything there
was to know about application protocols on the Internet, and that we’'d
built some very large object-oriented programs in C++ and Objective C.

I fully expected him to suggest someone from Microsoft. Instead he
said, “The best person in the world is Don Box.” And that’s how I met Don,
one of the finest teachers I know. Don not only explained well and ran labs
well and wrote well, but he never broke down under endless detailed ques-
tioning, ranging from the high-level “Why would you build the architec-
ture that way?” to the low-level “Where does that bit ever get set?” So Don
taught me (along with hundreds of thousands of others) what COM is,
why COM is, and what the problems with COM are. Along the way, just
off-hand ‘cause he thought we might be interested, he also did an amaz-
ingly good comparison to the CORBA technology and to the Web technol-
ogy we were designing and building.

&

I left the MIT and the Web Consortium to come to Microsoft to work on
a top-secret project called “COM+ Services.” My business card read “Pro-
gram Manager, Garbage Collection and Related Rubbish” because all we
could say (even internally at Microsoft) was that it had something to do
with programming languages and distributed systems, and it had a
garbage collector. I'm still on that same project at Microsoft, working
almost four years to help design and build what is now the Common Lan-
guage Runtime. I've worked on the IL design, four different JITs, the meta-
data, the garbage collector, the execution engine, and the ECMA (and soon,
hopefully, ISO) standards.

I was sure that I'd be able to turn around and teach Don something I'd
learned in this process (I'm not a bad teacher myself). But Don beat me to
the punch. He told me to read this book. And (darn it) he’s taught me
stuff I didn’t know about my own product! And I bet he’ll teach you
something, too.

Dr. James S. Miller

Microsoft Corporation

Lead Program Manager
Common Language Runtime

Preface

What Happened?

In 1998, Microsoft held a Professional Developer’s Conference (PDC) in
San Diego. COM luminary Charlie Kindel stood up in a general session
and proclaimed “no more GUIDs—no more HRESULTs—no more IUn-
known.” He and Mary Kirtland proceeded to show the basic architecture
of the CLR, then known as the COM+ Runtime. Later in the session, Nat
Brown and David Stutz stood up and demonstrated cross-language inher-
itance using Visual Basic and Java. Attendees actually went home with CDs
containing primitive versions of compilers that could reproduce this very
odd demonstration. It is now February 2002, and this technology has
finally shipped in release form.

There are two days that will forever demarcate the evolution of the
Microsoft platform. On July 27, 1993, Windows NT 3.1 was released, mark-
ing the end of the DOS era. On February 13, 2002, the Common Language
Runtime (CLR) was released as part of the NET Framework, marking the
end of the COM era.

The .NET Framework is a platform for software integration. Funda-
mentally, the . NET Framework provides two core integration technologies.
The Common Language Runtime (CLR) is used to integrate software
within a single operating system process. XML Web Services are used to
integrate software at Internet scale. Both rely on similar ideas, that is,

®e xvii

xviii

PREFACE

strongly typed contracts and encapsulation. Fundamentally, though, they
are two distinct technologies that one can elect to adopt independently of
one another. It is completely reasonable to adopt XML Web Services prior
to the CLR (in fact, many production Web services have already done this).
It is also reasonable to adopt the CLR in the absence of XML Web Services
in order to access CLR-specific features such as code access security or
superior memory management facilities. Going forward, however, both
the CLR and XML Web Services will be central to the Microsoft develop-
ment platform, and it is only a matter of time before both of these tech-
nologies play a role in everyone’s development experience.

The CLR and XML Web Services are both focused on strongly typed
contracts between components. Both technologies require developers to
describe component interactions in terms of type definitions or contracts.
In both technologies, these contracts share two key ideas that tend to per-
meate their use: metadata and virtualization.

Both the CLR and XML Web Services rely on high-fidelity, ubiquitous,
and extensible metadata to convey programmer intention. Metadata con-
veys the basic structure and type relationships to the developers who will
consume a CLR component or XML Web Service.

Equally important, ubiquitous metadata informs the tools and underly-
ing platform of what the component developers had in mind when they
were authoring the code.

This metadata-directed “clairvoyance” allows the platform to provide
richer support than would be possible if the component were completely
opaque. For example, various aspects of object-to-XML mapping are cap-
tured in metadata for use by the CLR’s XML serializer. How the developer
intended the XML to look is conveyed through declarative metadata exten-
sions rather than through explicit labor-intensive coding.

The second key idea that permeates CLR and XML Web Service con-
tracts is the notion of virtualization. Both technologies emphasize the sep-
aration of semantic intentions from physical implementation details.
Specifically, the metadata for both technologies work at an abstract struc-
tural level rather than in terms of low-level data representations and
implementation techniques. When developers specify intercomponent
contracts at this “virtual” level, the underlying platform is free to express

PREFACE

the contracts in the most appropriate manner available. For example, by
expressing Web Service contracts in terms of an abstract data model, the
plumbing is free to use an efficient binary data representation for perform-
ance or to use the text-based XML 1.0 representation for maximum inter-
operability.

Because contracts are virtualized, this specific detail of the contract can
be bound at runtime based on post-development characteristics.

Because this volume focuses exclusively on the CLR, a working defini-
tion of the CLR is in order. The CLR is fundamentally a loader that brings
your components to life inside an operating system process. The CLR
replaces COM’s CoCreateInstance and Win32’s LoadLibrary as the
primary loader for code.

The CLR loader provides a number of services beyond what COM and
Win32 offered before it. The CLR loader is version-aware and provides
flexible configuration of version policies and code repositories. The CLR
loader is security-aware and is a critical part of the enforcement of security
policy. The CLR loader is type-aware and provides a rich runtime environ-
ment for the explicit management and creation of types independent of
programming language. In short, the CLR loader is an advanced compo-
nent technology that supplants COM as Microsoft’s primary in-memory
integration strategy.

The CLR is made accessible through compilers that emit the CLR’s new
file format. Program language wonks view the CLR as providing key build-
ing blocks for compiler writers, building blocks that reduce the complexity
of compiler implementations. In contrast, systems wonks often view pro-
gramming lémguages as facades or “skins” over the underlying constructs
of the CLR. The author falls firmly into the latter camp. However, program-
ming languages are a necessary lens through which even low-level systems
plumbers view the CLR. To that end, examples in this book are written in
various programming languages because binary dumps of metadata and
code are arcane to the point of being incomprehensible.

B Xix

XX

PREFACE

About This Book

I try very hard to make a book readable and accessible to a wide array of
readers, but invariably, my terse writing style tends to make a “Don Box
book” a challenge to get through. Experience has shown me that I am hor-
rible at writing tutorials or primers. What I can do reasonably well is con-
vey how I see the world in book form. To that end, it is not uncommon to
need to read a Don Box book more than once to get the intended benefits.

As the previous paragraph implied, this book is by no means a tutorial.
If you try to learn .NET Framework programming from a standing start
using this book, the results may not be pretty. For readers looking for a
good tutorial on NET programming techniques or the C# language, please
read Stan Lippman’s C# Primer (Addison-Wesley, 2002) or Jeffery Richter’s
Applied NET Framework Programming (Microsoft Press, 2002) before taking
on this book.

This book is divided into two volumes. Volume 1 focuses on the Com-
mon Language Runtime. Volume 2 will focus [ST3]Jon XML Web Services.
Although the two technologies share a fair number of core concepts, the
thought of covering them both in a single book made my head spin.

This book was written against Version 1 of the CLR. Some of the inter-
nal techniques used by the CLR may evolve over time and may in fact
change radically. In particular, the details of virtual method dispatch are
very subject to change. They are included in this book largely as an hom-
age to COM developers wondering where the vptr went. That stated, the
basic concepts that are the focus of this book are likely to remain stable for
years to come.

Throughout the book, I use assertions in code to reinforce the expected
state of a program. In the CLR, assertions are performed using System.
Diagnostics.Debug.Assert, which accepts a Boolean expression as its
argument. If the expression evaluates to false, then the assertion has failed
and the program will halt with a distinguished error message. For readabil-
ity, all code in this book uses the short form, Debug . Assert, which assumes
that the System.Diagnostics namespace prefix has been imported.

My perspective on .NET is fairly agnostic with respect to language. In
my daily life, I use C# for about 50 percent of my CLR-based programming.

PREFACE

I use C++ for about 40 percent, and I resort to ILASM for the remaining
10 percent. That stated, most programming examples in this book use C#
if for no other reason than it is often the most concise syntax for represent-
ing a particular concept or technique. Although some chapters may seem
language-focused, none of them really is. The vast majority of this book
could have used C++, but, given the tremendous popularity of C#, 1
elected to use C# to make this book as accessible as possible.

This book focuses on the Common Language Runtime and is divided
into 10 chapters:

¢ Chapter 1—The CLR as a Better COM: This chapter frames the discus-
sion of the CLR as a replacement for the Component Object Model (COM)
by looking at the issues that faced COM developers and explaining how
the CLR addresses those issues through virtualization and ubiquitous,
extensible metadata.

¢ Chapter 2—Components: Ultimately, the CLR is a replacement for the
OS and COM loaders. This chapter looks at how code is packaged and how
code is loaded, both of which are done significantly differently than in the
Win32 and COM worlds. -

* Chapter 3—Type Basics: Components are containers for the code and
metadata that make up type definitions. This chapter focuses on the CLR’s
common type system (CTS), including what constitutes a type and how
types relate. This is the first chapter that contains significant chunks of
source code.

* Chapter 4—Programming with Type: The CLR makes type a first-class
concept in the programming model. This chapter is dedicated to the
explicit use of type in CLR programs, with an emphasis on the role of meta-
data and runtime type information.

e Chapter 5—Instances: The CLR programming model is based on types,
objects, and values. Chapter 4 focused on type; this chapter focuses on
objects and values. Specifically, this chapter outlines the difference
between these two instancing models, including how values and objects
differ with respect to memory management.

* Chapter 6—Methods: All component interaction occurs through method
invocation. The CLR provides a broad spectrum of techniques for making

xxii

-

PREFACE

method invocation an explicit act. This chapter looks at those techniques,
starting with method initialization through JIT compilation and ending
with method termination via strongly typed exceptions.

* Chapter 7—Advanced Methods: The CLR provides a rich architecture
for intercepting method calls. This chapter dissects the CLR’s interception
facilities and its support for aspect-oriented programming. These facilities
are one of the more innovative aspects of the CLR.

* Chapter 8—Domains: The CLR uses AppDomains rather than OS
processes to scope the execution of code. To that end, this chapter looks at
the role of AppDomains both as a replacement for the underlying OS’s
process model as well as an AppDomain’s interactions between the assem-
bly resolver or loader. Readers with Java roots will find the closest analog
to a Java class loader here.

* Chapter 9—Security: One of the primary benefits of the CLR is that it
provides a secure execution environment. This chapter looks at how the
CLR loader supports the granting of privileges to code and how those priv-
ileges are enforced.

» Chapter 10—CLR Externals: The first nine chapters of this book are
focused on what it means to write programs to the CLR’s programming
model. This concluding chapter looks at how one steps outside of that pro-
gramming model to deal with the world outside of the CLR.

Acknowledgments

As always, my wife and children made unreasonable sacrifices for me to
complete this book. In acknowledgment of this, I am taking at least a year
off before I tackle another book project.

This book would never have been completed had it not been for Chris
Sells. Chris was my writing partner on this project and pulled me through
some very rocky times during 2001, both personally and professionally.
Although Chris contributed no paragraphs to this book, his efforts are vis-
ible on every page.

Thanks go out to Jim Miller of the CLR team at Microsoft. Jim was nice
enough to write the foreword for this book, and for that I am personally
grateful. More importantly, however, Jim was the lead author on what I

PREFACE

consider the most important writing on the CLR, which is the five-part
ECMA specification for the CLI. These five Microsoft Word documents
reside in the Tools Developer’s Guide folder in the NET Framework SDK
and give more insight into the CLR than anything else I have read. Read-
ers familiar with my COM background may recall that I considered the
COM specification to be must-reading. For the CLR, I believe the ECMA
specifications are even more vital.

A lot of the insights I gained while writing this book were a result of
conversations that took place on the DOTNET mailing list at http://dis-
cuss.develop.com/. This list is the center of the universe for developers
and architects who are active in the CLR programming community. Spe-
cific listers who helped my thinking include Brian Harry, Jim Miller, Den-
nis Angeline, Steven Pratchner, Brent Rector, John Lam, Mike Woodring,
Keith Brown, Peter Drayton, Brad Wilson, Jay Freeman, and Sam Gentile.

This book would have considerably more errors had it not been for my
reviewers. Thanks go out to Dan Sullivan, Peter Drayton, Mike Woodring,
Chris Sells, Stuart Celarier, Jay Freeman, Steve Vinoski, Stan Lippman,
Robert Husted, Peter Jones, Mike Giroux, Vishwas Lele, Dan Green, Paul
Gunn, and Fumiaki Yoshimatsu. Arguably the most critical review was
from Brian Kernighan early on in the project. That review made me reeval-
uate where I wanted the book to go and how I was going to get it there. Had
it not been for Brian’s review, I am not certain I would have survived the
process. Thanks, Brian.

As always, it takes a village to be Don Box. For this book, that village
consisted of Helga Thomsen, Sandy Deason, Barbara Box, Judith Swer-
ling, David Baum, David Stromberg, Martin Gudgin, Mike Woodring,
Fritz Onion, Shannon Ahern Ikeda, Ron Sumida, Tim Ewald, and Aaron
Skonnard.

Don Box
February 2002
Yarrow Point, WA

® Xxiii

Contents

List of Figures ix
List of Tables xiii
Foreword XV
Preface xvii

1 TheCLR as a Better COM 1
COM Revisited 1
The Common Language Runtime 6
The Evolution of the Programming Model
Where Are We? 11

2 Components 13
Modules Defined 13
Assemblies Defined 17
Assembly Names 23
Public Keys and Assemblies 27
The CLR Loader 31
Resolving Names to Locations 38
Versioning Hazards 44
Where Are We? 48

3 TypeBasics 49
Type Fundamentals 49
Types and Initialization 60

vi

& CONTENTS

Types and Interfaces 64
Types and Base Types 69
Where Are We? 75

Programming with Type 77
Types at Runtime 77
Programming with Metadata 86
Special Methods 96

Metadata and Extensibility 104
Where Are We? 112

Instances 113

Objects and Values Compared 113
Variables, Parameters, and Fields 119
Equivalence Versus Identity 124

Cloning 130
Boxing 133
Arrays 134

Object Life Cycle 143
Finalization 147
Where Are We? 152

Methods 153

Methods and JIT Compilation 153

Method Invocation and Type 158

Interfaces, Virtual Methods, and Abstract Methods
Explicit Method Invocation 173

Indirect Method Invocation and Delegates 179
Asynchronous Method Invocation 189
Method Termination 199

Where Are We? 205

Advanced Methods 207
Motivation 207

Messages as Method Calls 209
Stack and Message Transitions 215

166

10

Proxiable Types 221
Message Processing (Revisited)
Objects and Context 236

Contexts and Interception 245

Where Are We? 252

Domains 253
Execution Scope and the CLR

Programming with AppDomains

AppDomain Events 262

229

253

258

AppDomains and the Assembly Resolver 267
AppDomains and Code Management 272
AppDomains and Objects (Revisited) 276

Where Are We? 281

Security 283

Components and Security 283

Evidence 285
Policy = 293
Permissions 306
Enforcement 314
Where Are We? 327

CLR Externals 329
Memory 329

Modes of Execution 342
Unmanaged Modules 347
Loading the CLR 363
The CLR as a COM Component
Where Are We? 379

Glossary 381
Index 385

370

CONTENTS

@ vii

Figures

Chapter 1:

Figure 1.1:

Chapter 2:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:

Chapter 3:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:

The CLR as a Better COM

The Move toward Managed Execution

Components

CLR Module Format

Modules and Assemblies

Multimodule Assemblies Using CSC.EXE

A Multimodule Assembly

Fully Specified Assembly Names

Managing Public/Private Keys Using SN.EXE
Strong Assembly References

Delay Signing an Assembly

Assembly Resolution and Loading

Assembly Resolver Configuration File Format
Version Policy

Assembly Resolution

APPBASE and the Relative Search Path
Culture-Neutral Probing

Culture-Dependent Probing

Type Basics

CLR Fields

Interfaces as Subsets

Interface Inheritance

Member Quverloading and Shadowing
Derivation and Construction

10

14
19
19
21
26
28
29
30
33
35
36
39
42

45

52
67
68
72
74

