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he book extensively introduces classical
Tand variational partial differential equations
(PDEs) to graduate and post-graduate students in
Mathematics. The topics, even the most delicate,
are presented in a detailed way. The book consists
of two parts which focus on second order linear
PDEs. Part | gives an overview of classical PDEs,
that is, equations which admit strong solutions,
verifying the equations pointwise. Classical
solutions of the Laplace, heat, and wave equations
are provided. Part Il deals with variational PDEs,
where weak (variational) solutions are considered.
They are defined by variational formulations
of the equations, based on Sobolev spaces. A
comprehensive and detailed presentation of these
spaces is given. Examples of variational elliptic,
parabolic, and hyperbolic problems with different
boundary conditions are discussed.
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Preface

The study of partial differential equations (PDEs) is at the crossroads of
mathematical analysis, measure theory, topology, differential geometry, sci-
entific computing, and many other branches of mathematics. Modeling
physical phenomena, partial differential equations are fascinating topics
because of their increasing presence in treating real physical processes. In
recent years, PDEs have become essential tools when modeling in fields
such as materials science, fluid mechanics, quantum mechanics, mathemat-
ical finance, biology and biomedicine, and environmental sciences.

The aim of this book is to introduce this important subject to graduate
and post-graduate students in Mathematics with sufficient background in
advanced calculus, real analysis, and functional analysis, as well as to young
researchers in the field. Indeed, as explained below, various reading levels
are possible, and because of that we also hope it will be useful to colleagues
teaching PDEs at different levels.

The book is essentially devoted to second order linear partial differential
equations and consists of two parts that are each self-contained. Part 1
(Chapters 1 to 5) gives a comprehensive overview of classical PDEs, that
is, equations which admit smooth (strong) solutions. Part II (Chapters 6
to 10) deals with variational PDEs, where weak solutions are considered.
They are defined via a weak (variational) formulation of the equations and
are searched in suitable function spaces (here in particular, Sobolev spaces).
These spaces, being the essential tools in the treatment of variational PDEs,
are introduced and extensively detailed.

The first chapter answers the basic question: What is a PDE? In this
chapter, we give the basic definitions encountered in the study of PDEs,
the general notation used throughout the book and a list of some classical
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partial differential equations. Chapter 2 presents the classification of PDEs
and their canonical forms. Characteristic curves and some existence the-
orems are also given. The classical examples of Laplace, heat, and wave
equations are introduced in Chapters 3, 4, and 5, respectively. Part I
is aimed to be an introductory presentation of the subject, it is why we
choose not to include too many details but to state only the main methods
and results, with proofs for some theorems.

For the study of weak solutions, a review of LP-spaces and distributions
is necessary. This is done in Chapter 6 where we also prove some less clas-
sical results, which are specifically needed in the succeeding chapters. A
comprehensive and detailed discussion of Sobolev spaces and Sobolev con-
tinuous and compact embeddings is presented in Chapters 7 and 8, respec-
tively. Examples of variational elliptic problems with different boundary
conditions are discussed in Chapter 9. Finally, variational parabolic and
hyperbolic problems are studied in Chapter 10.

The Sobolev spaces theory provides the foundation for variational PDEs.
For young mathematicians, understanding the proofs can be comforting and
undoubtedly formative. We decided to prove almost all the important re-
sults we stated, for completeness and for a deeper understanding of the
theory underlying variational PDEs. While writing this book, we observed
that some of the proofs we wanted to present in these chapters are not usu-
ally found in a PDE book, since they involve advanced topics in functional
analysis. We hope that their presence in this book will be appreciated by
the reader. We also give several references for further reading in every
chapter.

For Chapters 7 to 10, we have chosen to explain proofs in detail to
enable young researchers to do an independent study on the topics covered.
We also completed the presentation by an important number of examples,
in particular for the most delicate definitions.

According to the authors’ experience, the material covered here is more
than sufficient for a one-semester graduate course and may be extended
to two or three semesters, depending on the level of the students. For an
introductory course, we suggest a detailed discussion of Chapters 1 and
2 followed by solutions of the Laplace, heat, and wave equations in R?
from Chapters 3, 4, and 5. Definitions and theorems (without proofs) from
Chapters 6, 7 and 8, together with the Lax-Milgram Theorem, can then be
given before presenting some examples of variational elliptic problems from
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Chapter 9. Sections and proofs skipped in the first course, can be discussed
in detail in a second course. A more advanced course could contain the
proofs of the most delicate results from Chapter 7 as well as those of the
Sobolev embedding theorems. Then one could present the results of the
eigenvalue problems from Chapter 9, and apply them to the study of the
variational evolution problems done in Chapter 10.

Finally, let us mention that this book is based on the long experience of
the authors as researchers and teachers in the field of PDEs, teaching both
in their home universities and in research schools abroad. And as signifi-
cant, the book is founded on the scientific collaborations and deep friendship
between the authors, which have been enriched through the years. The first
two authors have a scientific collaboration for about thirty years, and the
collaboration with the third author started more than twelve years ago,
when they gave a graduate PDE course for three years at the Institute of
Mathematics, UP Diliman under the European Asia Link IMAMIS pro-
gram. In particular, the lecture notes of this course were published in 2012,
under the name “Introduction to classical and variational partial differential
equations”, by the University of the Philippines Press.

The present book is a more developed and detailed version of these
lecture notes.

Doina Cioranescu
Patrizia Donato
Marian P. Roque
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