Third Edition

LTE-Advanced Pro and The Road to 5 G

Erik Dahlman Stefan Parkvall Johan Sköld

4G, LTE-Advanced Pro and The Road to 5G

Third Edition

Erik Dahlman Stefan Parkvall Johan Sköld

Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1800, San Diego, CA 92101-4495, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2016, 2014, 2011 Erik Dahlman, Stefan Parkvall and Johan Sköld. Published by Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright. Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-804575-6

For information on all Academic Press publications visit our website at https://www.elsevier.com/

Publisher: Joe Hayton
Acquisition Editor: Tim Pitts

Editorial Project Manager: Charlotte Kent Production Project Manager: Lisa Jones

Designer: Greg Harris

Typeset by TNQ Books and Journals

4G, LTE-Advanced Pro and The Road to 5G

Preface

LTE has become the most successful mobile wireless broadband technology, serving over one billion users as of the beginning of 2016 and handling a wide range of applications. Compared to the analog voice-only systems 25 years ago, the difference is dramatic. Although LTE is still at a relatively early stage of deployment, the industry is already well on the road toward the next generation of mobile communication, commonly referred to as the fifth generation or 5G. Mobile broadband is, and will continue to be, an important part of future cellular communication, but future wireless networks are to a large extent also about a significantly wider range of use cases and a correspondingly wider range of requirements.

This book describes LTE, developed in 3GPP (*Third-Generation Partnership Project*) and providing true fourth-generation (4G) broadband mobile access, as well as the new radio-access technology 3GPP is currently working on. Together, these two technologies will provide 5G wireless access.

Chapter 1 provides a brief introduction, followed by a description of the standardization process and relevant organizations such as the aforementioned 3GPP and ITU in Chapter 2. The frequency bands available for mobile communication are also be covered, together with a discussion on the process for finding new frequency bands.

An overview of LTE and its evolution is found in Chapter 3. This chapter can be read on its own to get a high-level understanding of LTE and how the LTE specifications evolved over time. To underline the significant increase in capabilities brought by the LTE evolution, 3GPP introduced the names LTE-Advanced and LTE-Advanced Pro for some of the releases.

Chapters 4—11 cover the basic LTE structure, starting with the overall protocol structure in Chapter 4 and followed by a detailed description of the physical layer in Chapters 5—7. The remaining Chapters 8—11, cover connection setup and various transmission procedures, including multi-antenna support.

Some of the major enhancements to LTE introduced over time is covered in Chapters 12—21, including carrier aggregation, unlicensed spectrum, machine-type communication, and device-to-device communication. Relaying, heterogeneous deployments, broadcast/multicast services, and dual connectivity multi-site coordination are other examples of enhancements covered in these chapters.

Radio frequency (RF) requirements, taking into account spectrum flexibility and multi-standard radio equipment, is the topic of Chapter 22.

Chapters 23 and 24 cover the new radio access about to be standardized as part of 5G. A closer look on the requirements and how they are defined is the topic of Chapter 23, while Chapter 24 digs into the technical realization.

Finally, Chapter 25 concludes the book and the discussion on 5G radio access.

Acknowledgments

We thank all our colleagues at Ericsson for assisting in this project by helping with contributions to the book, giving suggestions and comments on the content, and taking part in the huge team effort of developing LTE and the next generation of radio access for 5G.

The standardization process involves people from all parts of the world, and we acknowledge the efforts of our colleagues in the wireless industry in general and in 3GPP RAN in particular. Without their work and contributions to the standardization, this book would not have been possible.

Finally, we are immensely grateful to our families for bearing with us and supporting us during the long process of writing this book.

Abbreviations and Acronyms

3GPP Third-generation partnership project

AAS Active antenna systems

ACIR Adjacent channel interference ratio
ACK Acknowledgment (in ARQ protocols)
ACLR Adjacent channel leakage ratio
ACS Adjacent channel selectivity
AGC Automatic gain control
AIFS Arbitration interframe space

AM Acknowledged mode (RLC configuration)
A-MPR Additional maximum power reduction

APT Asia-Pacific telecommunity

ARI Acknowledgment resource indicator

ARIB Association of radio industries and businesses

ARQ Automatic repeat-request

AS Access stratum

ATC Ancillary terrestrial component

ATIS Alliance for telecommunications industry solutions

AWGN Additive white Gaussian noise

BC Band category

BCCH Broadcast control channel

BCH Broadcast channel

BL Bandwidth-reduced low complexity
BM-SC Broadcast multicast service center

BPSK Binary phase-shift keying

BS Base station BW Bandwidth

CA Carrier aggregation

CACLR Cumulative adjacent channel leakage ratio

CC Component carrier
CCA Clear channel assessment
CCCH Common control channel
CCE Control channel element

CCSA China Communications Standards Association

CDMA Code-division multiple access
CE Coverage enhancement

CEPT European Conference of Postal and Telecommunications Administrations

CGC Complementary ground component

CITEL Inter-American Telecommunication Commission

C-MTC Critical MTC
CN Core network

CoMP Coordinated multi-point transmission/reception

CP Cyclic prefix

CQI Channel-quality indicator

CRC Cyclic redundancy check

C-RNTI Cell radio-network temporary identifier

CRS Cell-specific reference signal

CS Capability set (for MSR base stations)

CSA Common subframe allocation
CSG Closed Subscriber Group
CSI Channel-state information
CSI-IM CSI interference measurement

CSI-RS CSI reference signals
CW Continuous wave
D2D Device-to-device

DAI Downlink assignment index
DCCH Dedicated control channel
DCH Dedicated channel

DCI Downlink control information
DCF Distributed coordination function
DFS Dynamic frequency selection
DFT Discrete Fourier transform

DFTs-OFDM DFT-spread OFDM (DFT-precoded OFDM)

DIFS Distributed interframe space

DL Downlink

DL-SCH Downlink shared channel
DM-RS Demodulation reference signal

DMTC DRS measurements timing configuration

DRS Discovery reference signal
DRX Discontinuous reception
DTCH Dedicated traffic channel
DTX Discontinuous transmission

DwPTS Downlink part of the special subframe (for TDD operation)

ECCE Enhanced control channel element
EDCA Enhanced distributed channel access

EDGE Enhanced data rates for GSM evolution; enhanced data rates for global evolution

eIMTA Enhanced Interference mitigation and traffic adaptation

EIRP Effective isotropic radiated power EIS Equivalent isotropic sensitivity

EMBB Enhanced MBB

eMTC Enhanced machine-type communication

eNB eNodeB

eNodeB E-UTRAN NodeB EPC Evolved packet core

EPDCCH Enhanced physical downlink control channel

EPS Evolved packet system

EREG Enhanced resource-element group

ETSI European Telecommunications Standards Institute

E-UTRA Evolved UTRA

E-UTRAN Evolved UTRAN EVM Error vector magnitude

FCC Federal Communications Commission

FDD Frequency division duplex

FD-MIMO Full-dimension multiple input-multiple output

FDMA Frequency-division multiple access

FEC Forward error correction

FeICIC Further enhanced intercell interference coordination

FFT Fast Fourier transform

FPLMTS Future public land mobile telecommunications systems

FSTD Frequency-switched transmit diversity

GB Guard band

GERAN GSM/EDGE radio access network
GP Guard period (for TDD operation)
GPRS General packet radio services
GPS Global positioning system

GSM Global system for mobile communications

GSMA GSM Association HARO Hybrid ARQ

HII High-interference indicator
HSFN Hypersystem frame number
HSPA High-speed packet access
HSS Home subscriber server

ICIC Intercell interference coordination

ICNIRP International Commission on Non-Ionizing Radiation Protection

ICS In-channel selectivity

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse fast Fourier transform

IMT-2000 International Mobile Telecommunications 2000 (ITU's name for the family of 3G standards)
IMT-2020 International Mobile Telecommunications 2020 (ITU's name for the family of 5G standards)
IMT-Advanced International Mobile Telecommunications Advanced (ITU's name for the family of 4G

standards).

IOT Internet of things
IP Internet protocol
IR Incremental redundancy

IRC Interference rejection combining
ITU International Telecommunications Union

ITU-R International Telecommunications Union—Radio communications sector

KPI Key performance indicator
LAA License-assisted access
LAN Local area network
LBT Listen before talk

LCID Logical channel identifier
LDPC Low-density parity check code

LTE Long-term evolution

xxii ABBREVIATIONS AND ACRONYMS

MAC Medium access control MAN Metropolitan area network

MBB Mobile broadband

MBMS Multimedia broadcast—multicast service

MBMS-GW MBMS gateway

MB-MSR Multi-band multi-standard radio (base station)
MBSFN Multicast—broadcast single-frequency network

MC Multi-carrier

MCCH MBMS control channel
MCE MBMS coordination entity

MCG Master cell group
MCH Multicast channel

MCS Modulation and coding scheme

METIS Mobile and wireless communications Enablers for Twenty-twenty (2020) Information

Society

MIB Master information block
MIMO Multiple input—multiple output

MLSE Maximum-likelihood sequence estimation

MME Mobility management entity

M-MTC Massive MTC

MPDCCH MTC physical downlink control channel

MPR Maximum power reduction
MSA MCH subframe allocation
MSI MCH scheduling information
MSP MCH scheduling period
MSR Multi-standard radio
MSS Mobile satellite service
MTC Machine-type communication

MTCH MBMS traffic channel
MU-MIMO Multi-user MIMO

NAK Negative acknowledgment (in ARQ protocols)

NAICS Network-assisted interference cancelation and suppression

NAS Non-access stratum (a functional layer between the core network and the terminal that

supports signaling)

NB-IoT Narrow-band internet of things

NDI New data indicator

NGMN Next-generation mobile networks

NMT Nordisk MobilTelefon (Nordic Mobile Telephony)

NodeB A logical node handling transmission/reception in multiple cells; commonly, but not neces-

sarily, corresponding to a base station

NPDCCH Narrowband PDCCH
NPDSCH Narrowband PDSCH
NS Network signaling
OCC Orthogonal cover code

OFDM Orthogonal frequency-division multiplexing

OI Overload indicator
OOB Out-of-band (emissions)

OSDD OTA sensitivity direction declarations

OTA Over the air
PA Power amplifier

PAPR Peak-to-average power ratio

PAR Peak-to-average ratio (same as PAPR)

PBCH Physical broadcast channel PCCH Paging control channel

PCFICH Physical control format indicator channel PCG Project Coordination Group (in 3GPP)

PCH Paging channel
PCID Physical cell identity

PCRF Policy and charging rules function

PDC Personal digital cellular

PDCCH Physical downlink control channel
PDCP Packet data convergence protocol
PDSCH Physical downlink shared channel

PDN Packet data network
PDU Protocol data unit

P-GW Packet-data network gateway (also PDN-GW)
PHICH Physical hybrid-ARO indicator channel

PHS Personal handy-phone system

PHY Physical layer

PMCH Physical multicast channel
PMI Precoding-matrix indicator
PRACH Physical random access channel

PRB Physical resource block

P-RNTI Paging RNTI
ProSe Proximity services

PSBCH Physical sidelink broadcast channel PSCCH Physical sidelink control channel

PSD Power spectral density

PSDCH Physical sidelink discovery channel
P-SLSS Primary sidelink synchronization signal

PSM Power-saving mode

PSS Primary synchronization signal
PSSCH Physical sidelink shared channel
PSTN Public switched telephone networks
PUCCH Physical uplink control channel
PUSCH Physical uplink shared channel
QAM Quadrature amplitude modulation

QCL Quasi-colocation QoS Quality-of-service

QPP Quadrature permutation polynomial

xxiv ABBREVIATIONS AND ACRONYMS

QPSK Quadrature phase-shift keying

RAB Radio-access bearer
RACH Random-access channel
RAN Radio-access network
RA-RNTI Random-access RNTI
RAT Radio-access technology

RB Resource block
RE Resource element
REG Resource-element group

RF Radio frequency
RI Rank indicator

RLAN Radio local area networks

RLC Radio link control

RNTI Radio-network temporary identifier RNTP Relative narrowband transmit power

RoAoA Range of angle of arrival ROHC Robust header compression

R-PDCCH Relay physical downlink control channel

RRC Radio-resource control
RRM Radio resource management

RS Reference symbol

RSPC Radio interface specifications
RSRP Reference signal received power
RSRQ Reference signal received quality

RV Redundancy version

RX Receiver

S1 Interface between eNodeB and the evolved packet core

S1-c Control-plane part of S1
S1-u User-plane part of S1

SAE System architecture evolution SBCCH Sidelink broadcast control channel

SCG Secondary cell group
SCI Sidelink control information
SC-PTM Single-cell point to multipoint
SDMA Spatial division multiple access
SDO Standards developing organization

SDU Service data unit

SEM Spectrum emissions mask

SF Subframe

SFBC Space—frequency block coding

SFN Single-frequency network (in general, see also MBSFN); system frame number (in 3GPP).

S-GW Serving gateway

SI System information message SIB System information block SIB1-BR SIB1 bandwidth reduced SIC Successive interference combining

SIFS Short interframe space SIM Subscriber identity module

SINR Signal-to-interference-and-noise ratio

SIR Signal-to-interference ratio
SI-RNTI System information RNTI
SL-BCH Sidelink broadcast channel
SL-DCH Sidelink discovery channel

SLI Sidelink identity

SL-SCH Sidelink shared channel

SLSS Sidelink synchronization signal

SNR Signal-to-noise ratio

SORTD Spatial orthogonal-resource transmit diversity

SR Scheduling request SRS Sounding reference signal

S-SLSS Secondary sidelink synchronization signal

SSS Secondary synchronization signal

STCH Sidelink traffic channel
STBC Space—time block coding
STC Space—time coding

STTD Space—time transmit diversity

SU-MIMO Single-user MIMO

TAB Transceiver array boundary
TCP Transmission control protocol

TC-RNTI Temporary C-RNTI
TDD Time-division duplex

TDMA Time-division multiple access

TD-SCDMA Time-division-synchronous code-division multiple access

TF Transport format
TPC Transmit power control
TR Technical report

TRP Time repetition pattern; transmission reception point

TRPI Time repetition pattern index
TS Technical specification

TSDSI Telecommunications Standards Development Society, India

TSG Technical Specification Group

TTA Telecommunications Technology Association
TTC Telecommunications Technology Committee

TTI Transmission time interval

TX Transmitter

TXOP Transmission opportunity
UCI Uplink control information

UE User equipment (the 3GPP name for the mobile terminal)

UEM Unwanted emissions mask

UL Uplink

xxvi ABBREVIATIONS AND ACRONYMS

UL-SCH Uplink shared channel

UM Unacknowledged mode (RLC configuration)
UMTS Universal mobile telecommunications system

UpPTS Uplink part of the special subframe, for TDD operation

URLLC Ultra-reliable low-latency communication

UTRA Universal terrestrial radio access

UTRAN Universal terrestrial radio-access network

VoIP Voice-over-IP

VRB Virtual resource block

WARC World Administrative Radio Congress

WAS Wireless access systems

WCDMA Wideband code-division multiple access WCS Wireless communications service

WG Working group

WiMAX Worldwide interoperability for microwave access

WLAN Wireless local area network

WMAN Wireless metropolitan area network

WP5D Working Party 5D

WRC World Radio communication Conference

X2 Interface between eNodeBs.

ZC Zadoff-Chu