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Preface

This book is based on courses given at Columbia University on vector bun-
dles (1988) and on the theory of algebraic surfaces (1992), as well as lectures
in the Park City/IAS Mathematics Institute on 4-manifolds and Donald-
son invariants. The goal of these lectures was to acquaint researchers in
4-manifold topology with the classification of algebraic surfaces and with
methods for describing moduli spaces of holomorphic bundles on algebraic
surfaces with a view toward computing Donaldson invariants. Since that
time, the focus of 4-manifold topology has shifted dramatically, at first be-
cause topological methods have largely superseded algebro-geometric meth-
ods in computing Donaldson invariants, and more importantly because of
the new invariants defined by Seiberg and Witten, which have greatly sim-
plified the theory and led to proofs of the basic conjectures concerning the
4-manifold topology of algebraic surfaces. However, the study of algebraic
surfaces and the moduli spaces of bundles on them remains a fundamen-
tal problem in algebraic geometry, and I hope that this book will make
this subject more accessible. Moreover, the recent applications of Seiberg-
Witten theory to symplectic 4-manifolds suggest that there is room for yet
another treatment of the classification of algebraic surfaces. In particular,
despite the number of excellent books concerning algebraic surfaces, I hope
that the half of this book devoted to them will serve as an introduction
to the subject. There are few references to the general subject of vector
bundles on algebraic varieties beyond the book by Okonek, Schneider and
Spindler on vector bundles on projective spaces, the Astérisque volume of
Seshadri on bundles over curves, and a recent book by Huybrechts and
Lehn. I hope that combining the study of surfaces with that of vector bun-
dles on them (and on curves) will be mutually beneficial to both fields. For
example, detailed knowledge of a surface X is necessary in order to give a
detailed picture of the moduli space of bundles over X, and results about
ruled surfaces are an ingredient in the proof of the Bogomolov inequality
presented here. On the other hand, the Bogomolov inequality gives impor-
tant information about linear systems on surfaces, by a theorem of Reider,
and in particular gives a short proof of Bombieri’s theorem on the behavior
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of [nKx| when X is a minimal surface of general type. The original moti-
vation of computing Donaldson invariants has however disappeared except
for a brief discussion in Chapter 8 for elliptic surfaces.

It is a pleasure to thank the audience at the lectures which served as
the raw material for this book, as well as David Gomprecht, my course
assistant for the Park City institute, for an excellent job in proofreading
the rough draft of the first part of this book. I would also like to thank
Tomés Gémez and Titus Teodorescu for comments on various manuscript
versions, and Dave Bayer for doing an excellent job with the figures.

New York, New York Robert Friedman
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Introduction

The study of algebraic surfaces is by now over one hundred years old.
Many of the fundamental results were established by the Italian school of
algebraic geometry, for example Castelnuovo’s criterion for a surface to be
rational (1895), the theorem of Enriques that a surface is rational or ruled
if and only if P, or P; is zero (1905), and in general the role of the canoni-
cal divisor in the classification of surfaces. This theory was reworked from
the modern perspective of sheaves, cohomology, and characteristic classes
in a series of papers by Kodaira (1960-1968) and by the Shafarevich sem-
inar (1961-1963). In particular, new ideas were developed to attack those
questions in the classification theory which had proved resistant to the
synthetic techniques of the Italian school, for example the classification of
elliptic surfaces or the structure of the moduli space of K3 surfaces and
its relationship with the period map. Another deep result which seems to
be inaccessible to the classical methods is the Bogomolov-Miyaoka-Yau in-
equality c? < 3cy. Moreover, the new methods could be extended to the
study of compact complex surfaces (Kodaira) or algebraic surfaces in pos-
itive characteristic (Mumford and Bombieri-Mumford). Despite the great
progress in understanding algebraic surfaces, many open questions remain.
For example, the fundamental problem of whether there exists a classifi-
cation scheme of some sort for surfaces of general type seems to require a
completely new insight.

By contrast, the study of holomorphic vector bundles on algebraic sur-
faces is much more recent, and effectively dates back to two papers by
Schwarzenberger (1961). For the case of algebraic curves, Grothendieck
(1956) showed that every holomorphic vector bundle over P! is a direct
sum of line bundles (a result known in a different language to Hilbert,
Plemelj and Birkhoff, and prior to them to Dedekind and Weber). Atiyah
(1957) classified all vector bundles over an elliptic curve and made some
preliminary remarks concerning vector bundles over curves of higher genus.
In 1960, the picture changed radically when Mumford introduced the no-
tion of a stable or semistable vector bundle on an algebraic curve and used
geometric invariant theory to construct moduli spaces for all semistable
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vector bundles over a given curve. Soon thereafter Narasimhan and Se-
shadri (1965) related the notion of stability to the existence of a unitary
flat structure (in the case of trivial determinant) or equivalently a flat
connection compatible with an appropriate Hermitian metric. For curves,
much recent work has centered on the enumerative geometry of the mod-
uli space of curves. Explicit geometric constructions for the moduli space
were given for genus 2 curves by Narasimhan and Ramanan (1969) and for
hyperelliptic curves in general by Desale and Ramanan (1976).

In this context, Schwarzenberger made the following contributions to
the theory of vector bundles over a surface. In general, for a variety X
of dimension greater than 1, a vector bundle on X is not a direct sum of
line bundles or an extension of line bundles. Schwarzenberger’s first paper
studied rank 2 bundles V which are not simple (“almost decomposable”
in his terminology), in other words for which the automorphism group is
larger than C*. He showed, using the existence of a rank 1 endomorphism
on V, that V is an extension by a line bundle of a coherent sheaf of the form
L ® Iz, where L is a line bundle and Z is a 2-dimensional local complete
intersection subscheme, and in the case of surfaces X he gave a mechanism
for describing the set of all such extensions with a fixed Z. To do so, he
passed to a blowup X of X in order to be able to replace Iz by a line
bundle of the form O3(— 3", a;E;), where the E; are the components of
the exceptional divisor and the a, are nonnegative integers. As part of the
study, he analyzed when a vector bundle on X is the pullback of a bundle
on X.

In Schwarzenberger’s second paper, he showed that every rank 2 vector
bundle on a smooth surface X is of the form n,L, where 7: Y — X is a
smooth double cover of X and L is a line bundle on Y. He then applied
this construction to construct bundles on P? which were not almost decom-
posable; these turn out to be exactly the stable bundles on P2. He showed
further that, if V is a stable rank 2 vector bundle on P2, then the Chern
classes for V satisfy the basic inequality c;(V)? < 4ca(V).

In the years after Schwarzenberger's papers, the study of bundles over
surfaces diverged into two streams. In the first, there were various at-
tempts to generalize Mumford’s definition of stability to surfaces and
higher-dimensional varieties and to use this definition to construct mod-
uli spaces of vector bundles. Takemoto (1972, 1973) gave the straightfor-
ward generalization to higher-dimensional (polarized) smooth projective
varieties that we have simply called stability here (this definition is also
called Mumford-Takemoto stability, u-stability, or slope stability). Aside
from proving boundedness results for surfaces, he was unable to prove the
existence of a moduli space with this definition (and in fact it is still an
open question whether the set of all semistable bundles forms a moduli
space in a natural way). Shortly thereafter, Gieseker (1977) introduced
the notion of stability now called Gieseker stability or Gieseker-Maruyama
stability. Gieseker showed that the set of all Gieseker semistable torsion



Introduction 3

free sheaves on a fixed algebraic surface X (modulo a suitable equivalence
relation) formed a projective variety, containing the set of all Mumford
stable vector bundles as a Zariski open set. This result was generalized by
Maruyama (1978) to the case where X has arbitrary dimension. The dif-
ferential geometric meaning of Mumford stability is the Kobayashi-Hitchin
conjecture, that every stable vector bundle has a Hermitian-Einstein con-
nection, unique in an appropriate sense. This result, the higher-dimensional
analogue of the theorem of Narasimhan and Seshadri, was proved by Don-
aldson (1985) for surfaces, by Uhlenbeck and Yau (1986) for general Kihler
manifolds, and also by Donaldson (1987) in the case of a smooth projective
variety. (The easier converse, that an irreducible Hermitian-Einstein con-
nection defines a holomorphic structure for which the bundle is stable, was
established previously by Kobayashi and Liibke.) The geometric meaning of
Gieseker stability is more mysterious, although Leung (1993) has obtained
results in this direction. A related general result is Bogomolov’s inequality
for stable vector bundles, which follows from the Donaldson-Uhlenbeck-Yau
theorem as well as from various purely algebraic arguments (Bogomolov,
1977).

The other stream in studying vector bundles consists in analyzing moduli
spaces for specific classes of surfaces (and perhaps specific choices of the
Chern classes). The case of P2 and more generally P™ has received a great
deal of attention, and moduli spaces of vector bundles on P2 have been
described quite explicitly by the method of monads (Barth, Hulek and
Maruyama). Because this subject has been well described elsewhere (see for
example [117]), we do not discuss monads in this book. The case of ruled
surfaces has been analyzed by Hoppe and Spindler and also by Brosius.
Takemoto briefly treated the case of abelian surfaces, but the study of
vector bundles (not necessarily of rank 2) over K3 and abelian surfaces
really got off the ground with a series of papers by Mukai. This was the state
of the art until about 1985, when Donaldson theory gave a powerful impetus
to the study of rank 2 vector bundles over surfaces. We shall describe some
of the developments arising after 1985 at the end of Chapter 10.

There is perhaps a third stream which should be mentioned, that of the
enumerative geometry of the moduli space. By now these questions have
been well studied for bundles over curves (Verlinde formula, cohomology
ring of the moduli space), and in some sense Donaldson theory is simply a
question about the enumerative geometry of the moduli space of bundles
over a surface. Deep structure theorems and conjectures in gauge theory,
due to Kronheimer and Mrowka and Witten, suggest that there is a very
simple enumerative structure to this moduli space, but as yet there is no
way to see why this should be true purely within the context of algebraic
geometry.

The goal of this book is to provide a unified introduction to the study of
algebraic surfaces and of holomorphic vector bundles on them. I have tried
to keep the prerequisites to a good working knowledge of Hartshorne’s book
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on algebraic geometry [61] as well as standard commutative algebra (see
for example Matsumura’s book [87]). Aside from what is contained in [61],
we freely use the exponential sheaf sequence on a complex manifold and
the Leray spectral sequence (typically when it degenerates) as well as basic
properties of Chern classes which are summarized in Chapter 2, and for
which Fulton’s book [45] is a standard reference. For the most part, we use
the Riemann-Roch theorem only for vector bundles on a curve or surface,
for which proofs are given in the exercises to Chapter 2. However, we use the
Grothendieck-Riemann-Roch theorem once in Chapter 8 and the Riemann-
Roch theorem for a divisor on a threefold in Chapter 10, without recalling
the general statements. There is also a brief appeal to relative duality in
Chapter 7 and to the existence of a relative Picard scheme for smooth
fibrations of relative dimension 1 in Chapter 9. The appendix to Chapter 9
uses a little Galois theory, and some results which are not used in the rest
of the book use standard facts about group cohomology. The last section
of Chapter 4 assumes some basic familiarity with differential geometry on
a complex manifold, for example as described in the book by Griffiths and
Harris [55), and can be skipped. In Chapter 8, there is a brief discussion of
Donaldson invariants which motivates some of the enumerative calculations
in the rest of the chapter, but which can otherwise be omitted. Of necessity,
I have largely limited myself to the part of the study of vector bundles which
does not involve the heavy machinery of deformation theory or geometric
invariant theory; a few descriptive sections outline the main results.

For the first eight chapters, the plan has been to alternate between the
study of surfaces and the study of bundles on them. This has the pedagog-
ical advantage that, for example, vector bundles over curves are studied in
Chapter 4, then used to describe ruled surfaces in Chapter 5. In Chapter
6, we use the knowledge of ruled surfaces to describe vector bundles over
them, and in Chapter 9 they reappear as part of the proof of Bogomolov’s
inequality. Similarly, ruled surfaces are described in Chapter 5 and ellip-
tic surfaces in Chapter 7, and the structure of the moduli space of vector
bundles over such surfaces is then described in Chapters 6 and 8. I have
tried to emphasize how the internal geometry of the surface is reflected
in the birational geometry of the moduli space. In the last two chapters,
we drop the strict division of material: Chapter 9 gives a proof of Bogo-
molov’s inequality, which belongs to the theory of vector bundles, as well
as applications to the study of linear systems (in particular pluricanoni-
cal systems) on an algebraic surface. In Chapter 10, we prove the main
theorems on the classification of algebraic surfaces and outline the current
state of knowledge concerning moduli spaces of rank 2 vector bundles over
algebraic surfaces. The proofs of the classification results for surfaces are
old-fashioned, in the sense that they do not appeal to Mori theory. On the
other hand, the old-fashioned proofs may be better adapted to handling
the classification of symplectic 4-manifolds. The point of view of Mori the-
ory and the classification results for threefolds are briefly described toward
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the end of the chapter. Because of the way we alternate between surfaces
and vector bundles, it may be a little disorienting to try to read the book
chronologically, and certainly the chapters on surfaces can be, for the most
part, read independently of the chapters on vector bundles. On the other
hand, the later chapters on vector bundles over ruled or elliptic surfaces
draw heavily on the description of the corresponding surfaces in the chap-
ters that precede them.

Constraints of length and time dictated that many topics had to be
left out. For surfaces, I would have liked to devote more time to rational
and minimally elliptic singularities and to the classification of surfaces of
small degree. For vector bundles, without the main tool of deformation
theory, we are only able to scratch the surface of this rapidly evolving field.
Because this theory does not seem to be close to a definitive state, it seems
worthwhile to focus on many concrete examples.

Finally, there are many exercises at the end of each chapter, and they
are an integral part of the book. In particular, many results are left to the
exercises and they are frequently used in later chapters. I hope that the
emphasis on examples, both in the text and the exercises, will help to serve
as an introduction to this rich and beautiful field of mathematics.
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Curves on a Surface

Introduction

In this book, unless otherwise specified, by surface we shall always mean
a connected compact complex manifold of complex dimension 2 which is
a holomorphic submanifold of PV for some N. Thus, “surface” is short
for smooth (connected) complex algebraic surface. By Chow’s theorem, a
surface is also described as the zero set in PV of a finite number of homo-
geneous polynomials in IV + 1 variables. The study of surfaces is concerned
both with the intrinsic geometry of the surface and with the geometry of
the possible embeddings of the surface in PV . Just as with curves, we could
organize this study in order of increasing complexity. In terms of the ex-
trinsic (synthetic) geometry of a surface in PV, we could for instance try
to study and eventually classify surfaces in PV of relatively small degree.
Or we could attempt to order surfaces by complexity via some intrinsic
invariants, by analogy with the genus of a curve. This is the aim of the
Kodaira classification, which orders surfaces by their Kodaira dimension.
For this scheme, we have a fairly complete understanding of surfaces except
in the case of Kodaira dimension 2, general type surfaces. We will cover
the broad outlines of the general theory of surfaces. In this chapter, we
will discuss the basic invariants, intersection theory and Riemann-Roch,
and the structure of the set of ample divisors. In Chapter 3, we will dis-
cuss birational geometry. Chapters 5 and 7 will concern some of the main
examples of surfaces: rational and ruled surfaces, K3 surfaces, as well as
an introduction to elliptic surfaces. Finally, in Chapter 10, we shall give a
general overview of the classification of algebraic surfaces.

We begin with the description of the basic numerical and topological
invariants of a surface.
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Invariants of a surface

A surface X is in particular a complex manifold, and always carries a
canonical orientation from its complex structure. Viewing X as an ori-
ented 4-manifold, its main topological invariants are its fundamental group
71(X, #), the Betti numbers b;(X) = b4—;(X), and the intersection pairing
on Hy(X;Z). Here by Poincaré duality Hy(X;Z) & H?(X;Z) and inter-
section pairing corresponds under this isomorphism to cup product from
H?(X;Z)® H*(X;Z) to H*(X;Z) = Z by taking the canonical orientation.
Over R, the intersection pairing is specified by b;(X) and by b3 (X), the
number of positive entries along the diagonal when the form is diagonalized
over R. We also let b5 (X) = b(X) — b3 (X). If X = P? or if X is one of
an unknown but finite number of surfaces of general type whose universal
cover is the unit ball in C?, then H?(X;R) = R. If X does not belong
to this finite list of examples, then H,(X;R) is always indefinite (cf. for
example [40, p. 29, Lemma 2.4]). It then follows from the classification of
quadratic forms over Z [138], [92] that the intersection pairing on H2(X;Z)
mod torsion is specified by its rank, signature, and type, i.e., whether or
not there exists an element o € Hy(X;Z) with a® = 1 mod 2 or not. (If
there exists such an « the form is odd or of Type I; otherwise it is even
or of Type II.) To decide if a surface is of Type I or Type II, we use the
Wu formula, which says that o® = a-[Kx] mod 2. Here [K x] denotes the
homology class associated to the canonical line bundle K x via ¢;(Kx ) and
Poincaré duality. Thus, again by Poincaré duality, there exists an a with
a? =1 mod 2 if and only if the image of [Kx] in Hy(X;Z) = Hy(X;Z)
modulo torsion is not divisible by two.,

There are also the holomorphic invariants of X. The most basic ones are
the irregularity ¢(X) of X and the geometric genus p,(X) of X, defined
by

¢(X) = dim¢ H°(X; Q%) = dim¢ H!(X; Ox),
py(X) = dime H°(X;0%) = dim¢c H*(X; Ox).

Thus, g(X) is the number of independent holomorphic 1-forms on X and
P¢(X) is the number of holomorphic 2-forms on X. We note that the fact
that the two different expressions above for q(X) are equal follows from
Hodge theory, since X is an algebraic surface over C, and do not hold for
an arbitrary compact complex surface or for a surface defined over a field
of positive characteristic; in either case the “correct” definition of g(X)
is dim H'(X;Ox). (That the two expressions for Pg(X) are equal follows
from Serre duality which holds in general.) Additional invariants are given
by h'1(X) = dim H(X;QY%) and ¢;(X)? = [Kx]?. The relation of these
invariants to the topological ones is as follows:

bi(X) = 2¢(X),
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ba(X) = 2p,(X) + KV (X),
b (X) = 2p,(X) + 1.

Here the first two equalities follow by Hodge theory and the last is one
form of the Hodge index theorem for a surface. We also have the Euler
characteristic

x(X) =1-=b1(X) + bo(X) — b3(X) + 1
=2 —2by(X) + ba(X) = 2 — 4g + 2p,(X) + hH(X)
and the holomorphic Euler characteristic
x(Ox) = h%(Ox) - h'(Ox) + h*(Ox) =1 — ¢(X) + pg(X).

There is also Noether’s formula (in some sense a special case of the
Riemann-Roch theorem for surfaces) which says that

(X) + e2(X) = 12x(Ox),

or in other words that [Kx|? + x(X) = 12(1 — ¢(X) + py(X)). An easy
manipulation of the formulas (Exercise 1) shows that Noether’s formula is
equivalent to the Hirzebruch signature theorem

b3 (X) - b7 (X) = 3(c1(X) — 2c2(X)).

Beyond this there are the “higher” holomorphic invariants of X, the
plurigenera P,(X) = dim H°(X; K$"), defined for n > 1. Thus, P(X) =
pg(X). It is by now well known (39] that the plurigenera are not in general
homotopy or homeomorphism invariants of X. It has recently been shown
via new invariants introduced by Seiberg and Witten that the plurigenera
are diffeomorphism invariants of X (see for example [16] and [41]). We shall
discuss some of these developments further in Chapter 10.

Divisors on a surface

We recall that a (reduced irreducible) curve C on X is an irreducible holo-
morphic subvariety of complex dimension 1. Thus, locally C is described
as {f(z1, 2z2) = 0}, where f is a holomorphic function of 2;,z2. Of course,
C need not be a (holomorphic) submanifold of X; if it is we say that C is a
smooth curve. A divisor D on X is a finite formal sum Y, n;C; of distinct
irreducible curves C;, where the n; € Z. The set of all divisors Div X is
thus the free abelian group generated by the irreducible curves on X. The
divisor D is effective if the n; > 0 for all i. An effective divisor D # 0 will
also be called a curve. We write D > 0 if D is effective and D, > D, if
Dy — Dy > 0. If f; is a local equation for the curve C;, then D is locally
described by the meromorphic function [], fi**, which is in fact holomor-
phic if and only if D is effective. Conversely, a meromorphic function f on
X has an associated divisor (f), which is the curve of zeros of f minus the



