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Preface

This book is the 11th Five — Year programmed textbook for the countrywide higher agricultural uni-
versity, and it is the fruit of teaching reform item of higher education in Henan Province.

At present age, the internationalization of higher education is the main trend of educatior;
development. Certainly, one of our primary goal in China’s higher teaching revolution is to foster
and train more and more highly special talents with international eyes, awareness, and associa-
tion abilities. While the bilingual teaching is just a very good and effective way in realizing such a
big goal. ‘

In light of a document named “Suggestions on strengthening the higher undergraduate educa-
tion and enhancing the quality in teaching”, the ministry of education in 2001 proposed precisely
that it is quite necessary in every common and specialized courses to provide conditions for under-
graduate education in using English as a tool; further, it strove in three years to make the cur-
riculum in foreign language covering 5% ~10% among all courses given. In addition, the evalua-
ting scheme for general higher undergraduate education issued by the ministry of education in
2002 brought the bilingual teaching an important check index into the assessment index system,
requiring the hour for the bilingual teaching taking up more than 50% of a special course. Then,
since the year 2002, the bilingual teaching has become one of the hottest topics in higher teaching
revolution. Therefore, many universities propose policies encouraging teachers to study foreign
teaching materials; accordingly, a new trying and exploration develop quickly in light of the
practical course.

Since 2003, we’ve already made some exploration and tried on bilingual teaching, Creating
an important factor, the environment for applying English, but not merely learn it. Also, such
practice has been accepted by many students, from which we feel deep that teacher with good
English are fundamental to the bilingual teaching; besides, to the foreign materials, only those
contents satisfying our country’s situation can be a crucial factor and would be more helpful.

Nowadays, the foreign texts introduced generally have common problems as follows:

1. The price is too high;

2. Many cases provided break away from China’s social and life environment;

3. The contents and curriculum systems are quite different from that of our country.

Therefore, the problems referred above always impede the development of our country’s bi-
lingual teaching. In effect, by making native transformation, the foreign teaching materials can
be applied much more effectively. Thus, in terms of the fostering characteristics for universities
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in our country combining with nowadays’ curriculum contents and system, we complete the book
“Linear Algebra” in English edition after making some digestion, assimilation, and recreation to
the foreign text.

In publishing, I warmly thank the vice - headmaster Professor Baoan Cui, Henan Agricul-
tural University, Mingzeng Yu, institution of higher education and Xiaoying Hu, for their high-
ly support and help.

This edition of the Linear Algebra in English edition is a big try and exploration, and some
mistakes may not be avoided despite of the most carefully arrangement and revision. So it will be

our great pleasure to get criticism and comments from all experts, coteries and readers.

Baosong Liang
October 1, 2008
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Chapter 1 Determinants

Determinant is an important tool in mathematics research. This chapter will mainly introduce

the properties of nXn determinants and Cramer’s rule using determinant to solve linear system.
1.1 Determinants of Order 2 and 3

Use elimination to solve the system of linear equations in two unknowns
{aull +apz, = b, D
anx tazpx: = b,.

Where x; and x; are variables. To eliminate x;, we multiply both sides of the two equations by
ax and ay;, respectively, and thus subtract the second equation from the first equation to obtain
(anaz —apa;n)x = axb —anb;

Similarly, eliminate x; to obtain
(anaz —apran)r; = anb; —anb.
For ajjaz —ayzan 70, the solution of system (1) is given;

_ amb —anb T, = aub; —anb
= sl TUE oy, = e
a)dz — A12as ajdz; — Ajzdz

(2

I

To express conveniently, the coefficients a;1, a1z, az and ay, of variables in (1) are ar-

1 | : an ax
ranged in two rows and two columns, and we introduce the symbol D= to denote
az Az
anaz —apaz, thatis
an  dx
D= = andaz — aida- (3)
azn Qaz

D is called a 2X2 determinant.

ans aizs aznand agare called components of the determinant, they are arranged in two rows
and two columns. The horizontal line is called row while the vertical line is called column. And
a; (i, j=1, 2) is called the i; th component of determinant D.

The definition of the 2 X 2 determinant (3) can be remembered by using the diagonal
rule. The line crossing a;; and azis called the main diagonal; The line crossing az and aj;is called
the subsidiary diagonal. Thus 2X2 determinant is the product of two components in the main diag-
onal minus the product of two components in the subsidiary diagonal.

(3) is denoted as the denominator of the solution (2) to system (1) . According to the def-
inition of 2X2 determinant, the numerators of the expressions of x; and x; in (2) are respec-

e 1.
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tively written as

b ap an b
D, = = apb —apb,, D, = = byai —bjaa.

b, ax an by
Obviously, D;(i=1, 2) is the determinant obtained by replacing the : th column of D by the
constant column of (1) .

Thus if D70, the solution to the linear system (1) can be uniquely written as

11:%’ 12:%- 4

This method is called Cramer’s Rule used to solve the system of linear equations in two varia-
bles.
Example 1 Use 2X2 determinant to solve the system of linear equations
{33:1 — 2z, = 12,

25()1 + Ty — 1.
3 —_
Solution Since D= 1 5 ‘ =7%#0 and
12 —2 3 12
D, = =14, D, = =—21,
1 1 2 1
. D D

from (4) we obtain xIZﬁr—Z, x2=~52:—3.
Consider the system of linear equations in three unknowns
anx +anx; +aizx; = by,

anx tagx; +apnxs = by, (5
anx taspxe +a;x; = bs. '
Using the determinant method used to solve the system of linear equations in two unknowns, we
arrange the coefficients of variables in system (5) in three rows and three columns and introduce
the 3X3 determinant

D= |an axn axs|, (6)
a3 dzz  dAss
D is called the coefficient determinant of system (5) . We replace the first , second, and third

columns of D by the constant column of system (5) respectively, and introduce the following

three determinants

b ap an an b ap an ap b
Dy = b, ax an|, Dy=|an b an|, D;y = lan an b,
by an ay as by as an  ap by

where D, D;, D., D; are respectively defined as

D = ananay +a12a23a3] + a3tz as, — Q13822Q31 — A12A21A33 ~ Q1102332 5 N
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Dy = brazas; + bsaas + brayzasp — byazazn — brazas; — brazgas
D; = banas; + biagas + bsasan — banan —biazas —bsanags,
D; = bsanaz + branasn + bianan — biaznan — byazan — banas.
If D0, the system (5) has an unique solution
x :&9 12:&, J33:&~
D D D

This method is called Cramer’s Rule used to solve the system of linear equations in three var-
iables.

The definition of 3X 3 determinant can be remem-
bered using the diagonal rule. It {ollows from (7) that
we know D is constituted by 6 terms, each of which is
the product of three components coming from distinct
rows and columns of D. And the product is with sign,
its rule is expressed as Figure 1 - 1. The three real lines
in the figure are parallel to the main diagonal, and the
product of three components in the real line is with pos-
itive sign; The three imaginary lines are parallel to the
subsidiary diagonal, and the product of three compo-

nents in the imaginary line is with negative sign.

Example 2 Calculate

Solution D =2X2X(—1)-+3X3X1+(—DXIX(—D—(—1)
XZX1=3X (=D X(—1)—2X1X3
=(—4+9+1—(—2)—3—6=—1.

1.2 Determinants of Order n

In upward chapter, we have used determinants of order 2 and 3 to introduce Cramer’s Rule
and solved the systems of linear equations in two and three unknowns. Cramer’s Rule is valid for
the system of n linear equations in » unknowns similarly, here we need to calculate nXn determi-
nants. The diagonal rule used to calculate determinants of order 2 and 3 is not valid for determi-
nants of order higher than 3, so we give the definition of nXn determinant and the general arith-
metic.

It follows from (7) that we know:

(1) Each term of the expansion of determinant of order 3 is the product of three components

e 3 .
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coming from distinct rows and columns;

(2) The expansion is composed of 3! terms, the row subscripts of three components of each
term are arranged into the natural permutation while the column subscripts are arranged into a
certain permutation of 1, 2, 3. The set of integers 1, 2, 3 has 3! distinct permutations and each
permutation corresponds to one term of the expansion;

(3) The 3! terms of the expansion have three positive signs and three negative signs. The
terms with positive sign correspond to the permutations (123), (312) and (231), respectively,
which are obtained by zero or two (even number ) times interchanges of any two numbers of the
natural permutation 123 ; The permutations of column subscripts of the terms with negative sign
are obtained by one (odd number ) times interchanges of any two numbers of the natural permu-
tation 123. That is, the sign of each term of the expansion relates to the number (even or odd)
of interchanges.

To clarify the sign rule of the terms of expansion of nXn determinants, we introduce the

definition of inversion.

1.2.1 Inversion and Odevity of Permutation

A permutation of order » is simply an arrangement of the n numbers 1, 2, ---, n into an or-
dered set without repetition, denoted by ¢;i,+:*i,. Obviously, there are n! permutations of order
n, and the permutation 12++*n is called the natural permutation.

Definition 1 In a permutation i,7,:-:7,, if a larger integer precedes a smaller one, then the
two inintegers form an inversion. The total number of the inversions of a permutation is called the
number of inversions, written r(2;7,°**7,) .

A permutation is called even permutation if the number of inversions is even, and is called
odd permutation if the number of inversions is odd.

Example 1 Find the number of inversions of the following permutation and determine

whether the permutation is even or odd.

(1> 35214 ; (2) n(n—1)--:21.

Solution According to the definition of the number of inversions, the number of inversions
of any permutation #,i,++*7, can be written as

r(i14;°*,) =the number of integers that are less than i; and that follow i; +the number of
integers that are less than 7, and that follow i, +++++the number of integers that are less than 7,_,
and that follow 7,,.

(1) r(35214)=2+34+1+0=6, and the permutation 35214 is even;

(2) 2(n(n—1)-21) =<n—1>+<n—z>+---+2+1=@.

The odevity of permutation @ is determined by 7 and it is discussed as follows:

e 4 .
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For n—dk, Z2 L —28(4k—1) is even;

For n=ak+1, 2L —20(4+1) is even;

For n=dk+2, 21— (2k+1)(4k+1) is odd;
For n—4k+3, 2= (2-+1)(4k+3) is odd.

Thus for n=4k or n=4k+1, the permutation is even; for n=4k+2 or n=4k+3 , the per-
mutation is odd.

Definition 2 In a permutation, if we interchange two integers :, j and other integers are
fixed, we can obtain a new permutation. The transformation performed on the permutation is called
a transposition, denoted by (i, j) .The transposition of adjacent integers is called an adjacent
transposition.

Theorem 1 A transposition changes the odevity of permutation.

Proof First we show that an adjacent transposition changes the odevity of permutation.

Interchanging the adjacent integers i, j in a permutation :+=ij+-- of order n, we get a new
permutation -++ji--+. Since integers other than i, j are fixed, the number of inversions of these
integers are unchanged.

For i>>j, the number of inversions decreases by 1; for i<(j, the number of inversions in-
creases by 1. Thus an adjacent transposition changes the odevity of permutation.

Secondly, we show that the general case is true.

Let there be a permutation ***ia;az***a;j *** of order n and £ integers are between i and j. To
interchange i, j and obtain a new permutation ***ja,az***a;¢***, we can interchange i and a; and
thus interchange i and a;, +-+-+*Using k+1 times adjacent transpositions, we can move 7 to the
position that j occupied and obtain a new permutation ***aja;***asji*** ; and then we move j to
the position that a; occupied by k times adjacent transpositions. In this way the interchange of
and j can be accomplished by 2k=+1 times adjacent transpositions. And the odevity of the original
permutation is different from the new.

Corollary 1 The number of transpositions used to carry an odd permutation into the natural
permutation is odd. The number of transpositions used to carry an even permutation into the natural
permutation is even.

From Theorem 1, a transposition changes the odevity of a permutation. 12++*n is an even per-
mutation, and if #,i,+**1, is an odd (even) permutation, then it must be carried into the natural
permutation by transpositions an odd (even) number of times.

Corollary 2 In the set of permutations of order n(n==>2), the number of odd permutations

n!

2
Proof Let there be p odd permutations and g even permutations in the set of permutations

« 5.
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of order n. Using the same transposition (i, j) on the p odd permutations, it follows from The-
orem 1 that we get p even permutations. If we use the transposition (¢, j) on the p even permu-
tations, we can also get the original p odd permutations, thus the p even permutations are dif-
ferent from each other. Since there are ¢ even permutations together, p<{gq. Similarly, we can
show that ¢g<{p, and thus p=gq.

1. 2.2 The Definition of Determinant of Order n

Used the definitions of the inversion of permutation and the odevity, the determinant of or-
der 3
an 4ap apg
D= |an an axn
a3 Az dass
can be written in the form
2 (— D*42% ay; ayi, as, -
f1iziy
The upward term can be generalized to the determinant of order n and we obtain
Definition 3 Symbol
ay 4y Tt Qi
p= | % 7 D
. dn2 " QAm
denotes a determinant of order n, it is an algebraic sum of n! terms. These terms are all possible
products a;; as;, ***a._ of n components coming from distinct rows and columns of D. The sign of term
@, g a8 (—1D)% % | if 1,4,+-+1, is an odd permutation, then the sign of the term is nega-
tive, if i;7;+°-7, is an even permutation, then the sign of the term is positive. That is
D= E (— D% ay; ag, ***ax - (2)
i

Especially for n=1, |a| =a.

Example 2 Consider the determinant of order 4

a 0 0 b
10 ¢ d O
_OefO’
k0 0 h

according to the definition of determinant, D is an algebraic sum of 4! =24 terms. Each termis a
product of 4 components coming from distinct rows and columns of D. In the determinant, the
terms other than acfh, adeh, bdek and bcfk comprise at least one factor 0, thus they equal
0. Permutations corresponding terms acfh, adeh, bdek and bcfk, resbectively, are 1 234,

1324, 4321 and 4 231, where the first and third are even permutations and the second and
. 6§ s
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fourth are odd permutations. Thus we obtain

D = acfh — adeh + bdek — b fk.
Example 3 Calculate the determinant of order »

an 0 0

dz Az 0
D =

(2281 An2 ° Am

All its components above the main diagonal are zero, so it is called lower triangular (all its
components below the main diagonal are zero, so it is called upper triangular) .

Solution In n! terms of the determinant D of order n, we consider the nonzero terms. Since
each term is an algebraic product of n components coming from distinct rows and columns, the
nonzero term must be a product of n nonzero components. In the first row only a;;is nonzero, so
ai, in (2) is only taken by a;;, and az;, is taken by az, not ay, since apand ajare in the same
column. Similarly as, is only taken by as;, +-+, the last is taken by a, and thus

D= (—D"%"aya," " am = a11a2""*an-.
Similarly, the upper triangular
an dap °tt Al
0 Azt Az
0 0 - a,
Especially, the determinant whose components off the main diagonal are zero (called diagonal de-
terminant, written A )
ai
A= 4 . = anaz**am.
Am

In the same way, we can define diagonal determinant and triangular determinant correspond-
ing to the subsidiary diagonal. Using the definition of determinant, as to diagonal determinant
and upper, lower triangular determinant corresponding to the subsidiary diagonal, we, respec-
tively, obtain the following conclusions:

Al

A2n—1

n{n—1

= (_ 1) LAy Tt Qs

c 7 .
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ai " Qi1 Qan

az Qo w(a1)

= (_ 1) 2 QuAanp1°*Qnl}

A1 Agn n(—1)
== (— 1) z A17Q 271" Ayl »

.
. -
.

A Qw1 Am

It should be pointed out that the definition of determinant of order » has many forms.

For example, let the column subscripts of each term of determinant of order n be arranged
into the natural permutation, whereas the row subscripts form a certain permutation jij,+**j, of
order n. Thus we obtain another form of the definition of determinant (1)

b= Z (= D™ a; 10,0005, (3
iyia,

If the row subscripts of determinant of order n form a permutation #,4,*+*i, of order n, then
the column subscripts form another permutation j,j,+**j, of order n, then determinant (1) can
also be defined as the following form

_ Gy igeevi, Mre(G g eees,)
D= 2(_1)1‘1]12 i ey iy, @i j) Qiyjy "G, -

nin

4
1.3 Properties of Determinant

It follows from Definition 3 that we need to calculate n! products using the definition of de-
terminant to calculate the determinant of order n, it is very inconvenient. Thus we will study
properties of determinant in the following way and use the properties to simplify the calculations.

First we introduce the definition of the transpose of determinant.

Consider the determinant of order n

Interchanging the rows and columns of D, we obtain a new determinant
an dz;  **t an

Qpz Q2  °*t Ap

een
.

Al A2y e Am



