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Preface

This text is concerned with a probabilistic approach to image analysis as
initiated by U. GRENANDER, D. and S. GEMaN, B.R. HUNT and many
others. and developed and popularized by D. and S. GEMAN in a paper from
1984. It formally adopts the Bayvesian paradigm and therefore is referred to
as ‘Bavesian Image Analysis’.

There has been considerable and still growing interest in prior models
and. in particular, in discrete Markov random field methods. Whereas image
analysis is replete with ad hoc techniques, Bayesian image analysis provides
a general framework encompassing various problems from imaging. Among
those are such ‘classical’ applications like restoration, edge detection. texture
discrimination, motion analysis and tomographic reconstruction. The subject
is rapidly developing and in the near future is likely to deal with high-level
applications like object recognition. Fascinating experiments by Y. Chow,
U. GRENANDER and D.M. KEENAN (1987), (1990) strongly support this
belief.

Optimal estimators for solutions to such problems cannot in general be
computed analytically, since the space of possible configurations is discrete
and very large. Therefore, dynamic Monte Carlo methods currently receive
much attention and stochastic relaxation algorithms. like simulated annealing
and various dynamic samplers, have to be studied. This makes up a major
section of this text. A cautionary remark is in order here: There is scepticism
about annealing in the optimization community. We shall not advocate an-
nealing as it stands as a universal remedy, but discuss its weak points and
merits. Relaxation algorithms will serve as a flexible tool for inference and
a useful substitute for exact or more reliable algorithms where such are not
available.

Incorporating information gained by statistical inference on the data or
‘training’ the models is a further important aspect. Conventional methods
must be modified to become computationally feasible or new methods must be
invented. This is a field of current research inspired for instance by the work of
A. BENVENISTE, M. METIVIER and P. PRIOURET (1990), L. YOUNES (1989)
and R. AZENCOTT (1990)-(1992). There is a close connection to learning
algorithms for Neural Networks which again underlines the importance of
such studies. }



VIII  Preface

The text is intended to serve as an introduction to the mathematical
aspects rather than as a survey. The organization and choice of the topics
are made from the author’s personal (didactic) point of view rather than in
- a systematic way. Most of the study is restricted to finite spaces. Besides
a series of simple examples, some more involved applications are discussed,
mainly to restoration, texture segmentation and classification. Nevertheless,
the emphasis is on general principles and theory rather than on the details of
concrete applications. We roughly follow the classical mathematical scheme:
motivation, definition, lemma, theorem, proof, example. The proofs are thor-
ough and almost all are given in full detail. Some of the background from
imaging is given, and the examples hopefully give the necessary intuition.
But technical details of image processing definitely are not our concern here.

Given basic concepts from linear algebra and real analysis, the text is self-
contained. No previous knowledge of image analysis is required. Knowledge
of elementary probability theory and statistics is certainly beneficial, but not
absolutely necessary. The text should be suitable for students and scientists
from various fields including mathematics, physics, statistics and computer
science. Readers are encouraged to carry out their own experiments and some
of the examples can be run on a simple home computer. The appendix reviews
the techniques necessary for the computer simulations. The text can also serve
as a source of examples and exercises for more abstract lectures or seminars
since the single parts are reasonably selfcontained.

The general model is introduced in Chapter 1. To give a realistic idea
of the subject a specific model for restauration of noisy images is developed
step by step in Chapter 2. Basic facts about Markov chains and their multi-
dimensional analogue - the random fields - are collected in Chapters 3 and 4.
A simple version of stochastic relaxation and simulated annealing, a generally
applicable optimization algorithm based on the Gibbs sampler, is developed
in Chapters 4 through 6. This is sufficient for readers to do their own experi-
ments, perhaps following the guide line in the appendix. Chapter 7 deals with
the law of large numbers and generalizations. Metropolis type algorithms are
discussed in Chapter 8. It also indicates the connection with combinatorial
optimization. So far the theory of dynamic Monte Carlo methods is based
on DOBRUSHIN’s contraction technique. Chapter 9 introduces to the method
of ‘second largest eigenvalues’ and points to recent literature. Some remarks
on parallel implementation can be found in Chapter 10. It is followed by
a few examples of segmentation and classification of textures in Chapters
11 and 12. They mainly serve as a motivation for parameter estimation by
the pseudo-likelihood method addressed in Chapters 13 and 14. Chapter 15
applies random field methods to simple neural networks. In particular, a
popular learning rule is presented in the framework of maximum likelihood
estimation. The final Chapter 16 contains a selected collection of other typical
applications, hopefully opening prospects to higher level problems.
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Preface IX

The text emerged from the notes of a series of lectures and seminars the
author gave at the universities of Kaiserslautern, Miinchen, Heidelberg, Augs-
burg and Jena. In the late summer of 1990, D. Geman kindly gave us a copy
of his survey article (1990): plainly, there is some overlap in the selection of
topics. On the other hand, the introductory character of these notes is quite
different. .

The hook was written while the author was lecturing at the universities
named above and Erlangen-Niirnberg. He is indebted to H.G. Kellerer, H.
Rost and K.H. Fichtner for giving him the opportunity to hold this series of
lectures on image analysis. Finally, he would like to thank G.P. Douglas for
proof-reading parts of the manuscript and, last but not least, D. Geman for
his helpful comments on Part I.

Gerhard Winkler



Table of Contents

Introduction . .... ... . i 1
Part I. Bayesian Image Analysis: Introduction
1. The Bayesian Paradigm.................. ... ... ........ 13
1.1 TheSpaceofImages............ .. ... i, 13
1.2 The Space of Observations................. ... ... 15
1.3 Prior and Posterior Distribution.......................... 16
1.4 Bayesian Decision Rules .........................o L 19
2. Cleaning Dirty Pictures .................................. 23
2.1 Distortion of Images ...t 23
2.1.1 Physical Digital Imaging Systems................... 23
2.1.2 Posterior Distributions . ....................... ..., 26
2.2 Smoothing. . ... 29
2.3 Piecewise Smoothing............. ... ... il 35
2.4 Boundary Extraction ................... e 43
3. Random Fields ........... ... i i 47
3.1 Markov Random Fields ................................. 47
3.2 Gibbs Fields and Potentials.............................. 51
3.3 MoreonPotentials ............ ... i 57
Part II. The Gibbs Sampler and Simulated Annealing
4. Markov Chains: Limit Theorems.......................... 65
4.1 Preliminaries.......... ... ... ... 65
4.2 The Contraction Coefficient.............................. 69
4.3 Homogeneous Markov Chains ............................ 73
4.4 Inhomogeneous Markov Chains........................... 76



XI1 Table of Contents
5. Sampling and Annealing ................. .. ... . o 81
Bl Sampling c.c.oviiiiiiiii 81
5.2 Simulated Annealing . ......... ... . i i i 88
5.3 DiSCUSSION . . ot oi ittt e 94
6. Cooling Schedules ........ .. ... ... . i 99
6.1 The ICM Algorithm ...... ... ... .. ... iiiiiia. 99
6.2 Exact MAPE Versus Fast Cooling ........................ 102
6.3 Finite Time Annealing . ........... .. ... . . i, 111
7. Sampling and Annealing Revisited........................ 113
7.1 A Law of Large Numbers for Inhomogeneous Markov Chains. 113
7.1.1 The Law of Large Numbers........................ 113
7.1.2 A Counterexample. .. .........oviiiinniiinan.. 118
72 AGeneral Theorem............. ... ... . ... il 121
7.3 Sampling and Annealing under Constraints ................ 125
7.3.1 Simulated Annealing............. ... ... ... 126
7.3.2 Simulated Annealing under Constraints ............. 127
7.3.3 Sampling with and without Constraints ........ .ol 129

Part III. More on Sampling and Annealing

8.

10.

Metropolis Algorithms.................................... 133
8.1 The Metropolis Sampler............ .. .. ... ... iia.. 133
8.2 Convergence Theorems.............cooiviiiiiinnnnnnann.. 134
8.3 Best Constants..........ooiiiiiiii i 139
8.4 About Visiting Schemes ................................. 141
8.4.1 Systematic Sweep Strategies ....................... 141
8.4.2 The Influence of Proposal Matrices ................. 143
8.5 The Metropolis Algorithm in Combinatorial Optimization ... 148
8.6 Generalizations and Modifications ........................ 151
8.6.1 Metropolis-Hastings Algorithms .................... 151
8.6.2 Threshold Random Search........................ 153
Alternative Approaches............. ..., 155
9.1 Second Largest Eigenvalues .............................. 155
9.1.1 Convergence Reproved ................cccovuvun.... 155
9.1.2 Sampling and Second Largest Eigenvalues ........... 159
9.1.3 Continuous Time and Space ....................... 163
Parallel Algorithms ............ ... ... ... .. ............. 167
10.1 Partially Parallel Algorithms.............. ..o .. .. 168
10.1.1 Synchroneous Updating on Independent Sets......... 168

10.1.2 The Swendson-Wang Algorithm .................... 171



Table of Contents

XIII

10.2 Synchroneous Algorithms................................ 173
10.2.1 Introduction ..... ...t 173
10.2.2 Invariant Distributions and Convergence ............ 174
10.2.3 Support of the Limit Distribution .................. 178
10.3 Synchroneous Algorithms and Reversibility ................ 182
10.3.1 Preliminaries .................... .. ... .. ... ... ... 183
10.3.2 Invariance and Reversibility ....................... 185
10.3.3 Final Remarks ......... ... ... i, 189
Part IV, Texture Analysis
11. Partitioning ........ ... ... ... 195
11.1 Introduction .. ... 195
11.2 How to Tell Textures Apart............coovuunuuunen..... 195
11.3 Features. . ...oourenit ettt 196
11.4 Bayesian Texture Segmentation .......................... 198
11.4.1 The Features ......... ... ..oiuiiiinin ... 198
11.4.2 The Kolmogorov-Smirnov Distance ................. 199
11.4.3 A Partition Model ................................ 199
11.4.4 Optimization .............. ... i ... 201
11.4.5 A Boundary Model ............................... 203
11.5 Julesz’s Conjecture ... .. 205
11.5.1 Introduction .......... ... ... .. ... . . ..., 205
11.5.2 Point Processes ...................cccuiiiiii .. 205
12. Texture Models and Classification ...................... .. 209
12.1 Introduction ............ o 209
12.2 Texture Models .......... ..., 210
12.2.1 The d-Model ............ooo i, 210
12.2.2 The Autobinomial Model.......................... 211
12.2.3 Automodels .......... ... 213
12.3 Texture Synthesis ......... ... ... i, 214
12.4 Texture Classification ................... ... ... ... 216
12.4.1 General Remarks ............ ... o, 216
12.4.2 Contextual Classification .......................... 218
1243 MPM Methods...............oo oo oo . 219
Part V. Parameter Estimation
13. Maximum Likelihood Estimators ......................... 225
13.1 Introduction ..... ..o 225
13.2 The Likelihood Function ................. ... ... ... .. 225



XIV  Table of Contents

13.3 Objective Functions ......... ..o, 230
13.4 Asymptotic Consistency . ..........couuueeei .. 233
14. Spacial ML Estimation .......................... ... ..... 237
14.1 Introduction . ...... ..ottt 237
14.2 Increasing Observation Windows ......................... 237
14.3 The Pseudolikelihood Method . ........................... 239
14.4 The Maximum Likelthood Method ........................ 246
14.5 Computation of ML Estimators .......................... 247
14.6 Partially Observed Data................................. 253
Part VI. Supplement
15. A Glance at Neural Networks ............................ 257
15.1 Introduction ....... ... 257
15.2 Boltzmann Machines. . ............ .. ... ... ... ... . .... 257
153 ALearningRule ... .. ... .. L 262
16. Mixed Applications................. . ... ... ... . ..... 269
161 Motion . ..o 269
16.2 Tomographic Image Reconstruction . ...................... 274
16.3 Biological Shape........... ... ... ... . .. . 276
Part VII. Appendix
A. Simulation of Random Variables .......................... 283
A.1 Pseudo-random Numbers . .............. ... ............. 283
A.2 Discrete Random Variables .............................. 286
A.3 Local Gibbs Samplers ................ .. ... . ........ 289
A.4 Further Distributions ................................... 290
A.4.1 Binomial Variables ............................... 290
A.4.2 Poisson Variables................. ... ... . . ... 292
A 4.3 Gaussian Variables ........ ... ... ... ... ... .. . ... 203
A.4.4 The Rejection Method ............................ 296
A.4.5 The Polar Method..............o v 297
B. The Perron-Frobenius Theorem........................... 299
C. Concave Functions.............. ... ... ... ... . . ... ... .. 301
D. A Global Convergence Theorem for Descent Algorithms .. 305
REfOreNCES . . ... .\ttt 307
Index ... ..o -. .. 321



Introduction

In this first chapter, basic ideas behind the Bayesian approach to image anal-
ysis are introduced in an informal way. We freely use some notions from ele-
mentary probability theory and other fields with which the reader is perhaps
not perfectly familiar. She or he should not worry about that — all concepts
will be made thoroughly precise where they are needed.

This text is concerned with digital image analysis. It focuses on the ex-
traction of information implicit in recorded digital image data by automatic
devices aiming at an interpretation of the data, i.e. an explicit (partial) de-
seription of the real world. It may be considered as a special discipline in
image processing. The latter encompasses fields like image digitization, en-
hancement and restoration, encoding, segmentation, representation and de-
scription (we refer the reader to standard texts like ANDREWS and HuxT
(1977). PraTT (1978), HORN (1986), GONZALEZ and WINTZ (1987) or HAR-
ALIcK and SHAPIRO (1992)).

Image analysis is sometimes referred to as ‘inverse optics’. Inverse prob-
lems generally are underdetermined. Similarly, various interpretations may
be more or less compatible with the data and the art of image analysis is to
seleet those of interest. Image synthesis, i.e. the ‘direct problem’ of mapping
a real scene to a digital image will not be dicussed in this text.

Here is a selection of typical problems :

Image restoration: Recover a ‘true’ two-diniensional scene from noisy data.

Boundary detection: Locate boundaries corresponding to sudden changes

of physical properties of the true three-dimensional scene such as surface,

shape. depth or texture.

- Tomographic reconstruction: Showers of atomic particles pass through the
body in various directions (transmission tomography). Reconstruct the dis-
tribution of tissue in an internal organ from the ‘shadows’ cast by the
particles onto an array of sensors. Similar problems arise in emission to-
mography.

— Shape from shading: Reconstruct a three-dimensional scene from the ob-

served two-dimensional image.

Motion analysis: Estimate the velocity of objects from a sequence of images.

Analysis of biological shape: Recognize biological shapes or detect anoma-

lics.

1
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2 Introduction

We shall comment on such applications in Chapter 2 and in Parts IV
and VI. Concise introductions are GEMAN and GIDAS (1991), D. GEMAN
(1990). For shape from shading and the related problem of shape from texture
see GiDas and TORREAO (1989). A collection of such (and many other)
applications can be found in CHELLAPA and JAIN (1993). Similar problems
arise in fields apparently not related to image analysis:

— Reconstruct the locations of archeological sites from measurements of the
phosphate concentration over a study region (the phosphate content of soil
is the result of decomposition of organic matter).

— Map the risk for a particular disease based on observed incidence rates.

Study of such problems in the Bayesian framework is quite recent, cf. BESAG,
YORK and MOLLIE (1991).

The techniques mentioned will hopefully be helpful in high-level vision
like object recognition and navigation in realistic environments.

Whereas image analysis is replete with ad hoc techniques one may believe
that there is a need for theory as well. Analysis should be based on precisely
formulated mathematical models which allow one to study the performance of
algorithms analytically or even to design optimal methods. The probabilistic
approach introduced in this text is a promising attempt to give such a basis.
Oue characterization is to say it is Bayesian. As always in Bayesian inference,
there are two types of information: prior knowledge and empirical data. Or,
conversely, there are two sources of uncertainty or randomness since empirical
data are distorted ideal data and prior knowledge usually is incomplete.

In the next paragraphs, these two concepts will be illustrated in the con-
text of restoration, i.e. ‘reconstruction’ of a real scene from degraded obser-
vations. Given an observed image, one looks for a ‘restored image’ hopefully
being a better represention of the true scene than was provided by the orig-
inal records. The problem can be stated with a minimum of notation and
therefore is chosen as the introductory example.

In general, one does not observe the ideal image but rather a distorted
version. There may be a loss of information caused by some deterministic
noninvertible transformation like blur or a masking deformation where only
a portion of the image is recorded and the rest is hidden to the observer.
Observations may also be subject to measurement errors or unpredictable in-
fluences arising from physical sources like sensor noise, film grain irregularities
and atmospheric light fluctuations. Formally, the mechanism of distortion is
a deterministic or random transformation y = f(z) of the true scene z to
the observed image y. ‘Undoing’ the degradations or ‘restoring’ the image
ideally amounts to the inversion of f. This raises severe problems associated
with invertibility and stability. Already in the simple linear model y = Bz,
where the true and observed images are represented by vectors z and y, re-
spectively, and the matrix B represents some linear ‘blur operator’, B is in
general highly noninvertible and solutions z of the equation can be far apart.
Other difficulties come in since y is determined by physical sampling and
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the elements of B are specified independently by system modeling. Thus the
system of equations may be inconsistent in practice and have no solution at
all. Therefore an error term enters the model, for example in the additive
form y = Bz + e(x).

Restoration is the object of many conventional methods. Among those
one finds ad hoc methods like ‘noise cleaning’ via smoothing by weighted
moving averages or — more generally — application of various linear filters to
the image. Surprising results can be obtained by such methods and linear
filtering is a highly developed discipline in engineering. On the other hand,
linear filters only transform an image (possibly under loss of information),
hopefully, to a better representation, but there is no possibility of analysis.

Another example is inverse filtering. A primitive example is least-square
inverse filtering: For simplicity, suppose that the ideal and the distorted image
are represented by rectangular arrays or real functions = and y on the plane
giving the distribution of light intensity. Let y = Bz + 7 for some linear
operator B and a noise term 7. An image £ is a candidate for a ‘restoration’
of y if it minimizes the distance between y and Bz in the L2-norm; i.e. the
function z — |[ly — Bz|l3 (for an array z = (2,)ses, ||2]3 = ¥, 22). This
amounts to the criterion to minimize the noise variance ||7]|3 = |ly - Bz||%. A
final solution is determined according to additional criteria. The method can
be interpreted as minimization of the quadratic function z » [ly — z{|3 under
the ‘rigid’ constraint z = Bz and the choice of some # satisfying ¢ = B# for
the solution £. The constraint z = Bz mathematically expresses the prior
information that z is transformed to Bz.

If the noise variance is known one can minimize z — ||y — z|| under the
constraint ||y — Bz||3 = 0 where ¢ denotes noise variance. This is a simple
example of constrained smoothing.

Bayesian methods differ from most of these methods in at least two re-
spects: (i) they require full information about the (probabilistic) mechanism
which degrades the original scene, (ii) rigid constraints are replaced by weak
ones. These are more flexible: instead of classifying the objects in question
into allowed and forbidden ones they are weighted by an ‘acceptance function’
quantifying the degree to which they are desired or not. Proper normalization
yields a probability measure on the set of objects - called the ‘prior distri-
bution’ or prior. The Bayesian paradigm allows one to consistently combine
this ‘weak constraint measure’ with the data. This results in a modification of
the prior called posterior distribution or posterior. Here the more or less rigid
expectations compete with faithfulness to the data. By a suitable decision
rule a solution to the inverse problem is selected, i.e. an image hopefully in
proper balance between prior expectations and fidelity to the data.

To prevent fruitless discussions on the Bayesian philosophy, let us stress
that though the model formally is Bayesian, the prior distribution can be
Just considered as a flexible substitute for rigid constraints and, from this
point of view, it is at least in the present context an analytical rather than
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a probabilistic concept. Nevertheless, the name ‘Bayesian image analysis’ is
common for this approach. Besides its formal merits the Bayesian frame-
work has several substantial advantages. Methods from this mature field of
statistics can be adopted or at least serve as a guideline for the development
of more specific methods. In particular, this is helpful for the estimation of
optimal solutions. Or, in texture classification, where the prior can only be
specified up to a set of parameters, statistical inference can be adopted to
adjust the parameters to a special texture.

All of this is a bit general. Though of no practical importance, the follow-
ing simple example may give you a flavour of what is to come.

Fig. 0.1. A degraded image

Consider black and white pictures as displaved on a computer screen.
‘They will be represented by arrays (z,)ses: S is a finite rectangular grid of
‘pixels’ 5, 25 = 1 corresponds to a black spot in pixel s and z, = 0 means
that s is white. Somebody (nature ?) displays some image y (Fig. 1).

We are given two pieces of information about the generating algorithm:
(i) it started from an image = composed of large connected patches of black
and white, (ii) the colours in the pixels were independently flipped with
probability p each. We accept a bet to construct a machine which roughly
recovers the original image. There are 27 possible combinations of black and
white spots, where ¢ is the number of pixels. In the figures we chose ¢ =
80 x 80 and hence 2% ~ 10'92; in the more realistic case o = 256 x 256 one
has 27 ~ 1019660, We want to restrict our search to a small subset using the
information in (i). It is not obvious how to state (i) in precise mathematical
terms. We may start selecting only the two extreme images which are either
totally white or totally black (Fig. 2). Formally, this amounts to the choice
of a feasible subset of the space X = {0, 1}5 consisting of two elements. This
is a poor formulation of (i) since it does not express the degrees to which for
instance Fig. 3(a) and (b) are in accordance with the requirement: both are
forbidden. Thus let us introduce the local constraints

~ z, = x, for all pixels s and ¢ adjacent in the horizontal, vertical or diagonal
directions.
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In the example, we have n = 80 rows and columns, respectively, and hence
2n(n—1) = 12,640 adjacent pairs s, t in the horizontal or vertical directions.
and the same number of diagonally adjacent pairs. The feasible set is the
same as before but weighting configurations = by the number A(z) of valid
constraints gives a measure of smoothness. Fig. 3(a) differs from the black

image only by a single white dot and thus violates only § of the 23, 280 local
constraints whereas (b) violates one half of the local constraints. By the rigid
constraints both are forbidden whereas A differentiates between them. This
way the rigid constraints are relaxed to ‘weak constraints’. Hopefully, the
reader will agree that the latter is a more adequate formulation of piecewise
smoothness in (i) than the rigid ones.

More gencrally, one may define local acceptor functions by

_Alsl(l‘s,ml):{(lst if @ =&

Tst 'lf Ts F+ Ty
(a for ‘attractive’ and r for ‘repulsive’). The numbers ay; and 7y, control the

degree to which the rigid local constraints are fulfilled. For the present, they
are not completely specified. But if we agree that Ay (zs,2¢) > Ag(2). 27)



