Y BN B Y B KEE

I5’H7‘E*1§%ﬂ%‘5$§7ﬁ?§'ﬁﬂ%ﬁ% =

ﬁﬁwhf%

Java 1&
(B _hR =EPRR)

MODERN COMPILER
IMPLEMENTATION IN JAVA

(Second Edition)

B Andrew W. Appel
with Jens Palsberg

‘| S % G WA A

Higher Education Press

T,

R T T LT T

(SEZRE REDRRD

MODERN CO
IMPLEMENTATI

(Second Editjpon) ﬁ ig ~r
| | B H

Andrew W, Abpet
with JengRglsberg

B rsgsnma

BEF: 01-2003-1076 S

Modern Compiler Implementation in Java, Second Edition
Andrew W. Appel, with Jens Palsberg

ERRA QR 4N RICHE KRBT E (AEEEES. SEMRIILU A
flb XD

Originally published by Cambridge University Press in 2002.

This reprint edition is published with the permission of the Syndicate of the Press of the University of
Cambridge, Cambridge, England.

B RR i @M R 2 H R T 2002 FEHRR

AR ENRR 52 B SUHF A0 SIBF K 2 R B AL ED

Modern Compiler Implementation in Java, 2e by Andrew W. Appel, with Jens Palsberg, Copyright ©
Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing
agreements, no reproduction of any part may take place without the written permission of Cambridge
University Press.

EPBERSAE (CIP) &

BRRFBRTLI: JavaiB T 5 2 WK/ (%) FFIR
(Appel,A.W.), (X)MH/RIIEH (Palsberg,)R E. —F
Ends. —dbit: BEHE H R4t , 2003,

44 JE 3 : Modern Compiler Implementation in Java

ISBN 7-04-013501-9

[LB. N.OM. QM. INORFEF-BF
Wit —HEER - —HX @IAVAEBEE —BFE
i —REER —#M—%X V. TP314

v B A B 548 CIP BB M7 (2003) 85 069930 &

HEERT REHEHRHM ~ WHEHZLE 010—64054588

it H R TEBRREIKRELS #£B5H 800—810—0598
HPEL4REY 100011 2] tit http://www.hep.edu.cn
B H 010—82028899 http://www.hep.com.cn
] ¥ FEPHEAREETH

Ep B b EKRENR)

¥ & - 787x 1092 1/16 4 X O2003FE8AF K

] ¥ 32 En X’ O20034E 8 A% 1 WEIRY
¥ ¥ 610000 E #r 38007

2590 BRI 180 T | Fisd 0 45 S5 O (6 A, 3 0 g T S I S AR T TR R R
ARRFBTH AR

i

Hil

20 K, DU ENAEREEANRKRNESHFRERAGYREF. HH.
FE. FIMXAUETLETRAYY. EEAEEANRELRABR, FahT#
RUEEERFLHEDHLE, Y HFFZERERT FEHER.

HAN21 L, AHEFEREWAN WTO, EEFVHERFE SR EMEKI. &
EERFLEREHERBRETRELE, E5LAERAL, RE50F. %
RELERM, AARAZE. BRELMHABRAEAEESULHERE S
7, BEREBATEERFRAAANRERRKE. JIHEIMEERFRERR
HHA, EHAHRNERBHFROERREIGERY, REAFTH Y wPERAH
BRENEBHAAS REE —HEEEH.

bk, HEBERSHERET HRLE LT REBHEREARFAMH T HA A
I, BREHETASER, —REFHAF, —RERNE. EHEHKT LKL
RN EZEARIABMERANENT, S URENHE, £ -3 HH 20 5 #
HMOAHEER. XEXEMERELE T/ 20558, X+ATHORERERER
FEARGEREFL LR, BN EEZEPRBREERFRARAEKFTHRENREES,
RETENHRERBEBRRFY AT, TENBELERAEY, SEAF
R B mBAMA Y,

RFEMTATHRERTRBEEATANBEHANARNLLT, pENEEL
HEFRFBENER.) 2485, AXARESHM AT RS RN EA L,
& TEAMENEL AFRXELHRERBEHITRAT AN, 4, John Wiley
AN E R AR LB A5 EA F 55 0 Bl & & Silberschatz %3t 2 £ #F (B
FEMAEY, REMNEARERH, BTREFAHAHFUS| #EH. William Stallings
SFEYHE TAEEERIRWNESHRFERRZIEMN, HEHEHHMRBLX
EXMFFREEHEDESFRG T ENBFEE TEHM L, Z{IHHM P RAH
WP REN, EEFEEH Jawei Han 540 (HELE) BAARTAHERH
B EE, Bk F ¥ Thomas Cormen FHZEE T ¥ 5. FHHLTAK¥H/L

fr¥# LR mEN A REE (HERRY), EEHT 11 FHERZ)E T 2001 F 1K
T#% K. B ¥ # T %£E Massachusetts X % 4 James Kurose %1%, Y EXE = fr
BRERE 10 RKBABRITRALHFR, dbIhin GHEVFEY BKE, U
HEAHA. AEAATRIRN. EFHBREIIARAENTE, HTEHFTLK
BT AEfERN TE, XES OB ELT BN, 244, EHABRER
MR

HER LA LEANFESN Y ERERRSE R T, £RERHFEEEEAR
HEMERFLMER. RIOESSIFHRATES, TRERBETHLTHE S
BEFOHEMN, MELETHE IR LER TR, Eilsl#EMnhEs
BREREMEY, LS AEFRFARESR. YENRKTTHEX, IEHK
NE FoE QHRAEERRY AKRITRERERA.

ESIH MR, RINENMFHARY, TEFIEMEHNHFELAR
HEFE, REOREMOKE, ERONGHEFPOEMEAZTKREZ L, EERS X
BEESL, ERERFEN TN EEARAN R I,

BHl, #EHEALE IS IBRBATHARRGEFRAER LR, X4E
WRIEFREEHFHAAANWEELEEZ —. THEMKEERELR FEHREFEIK
RENHERANKEAL, EENpLERIEL CLEELY, LEAIELIT
A HEREFAN, BEEAS LRI ELRER, CEREFAGHH
MIFRHF.

BMFL BRI LEE, BEREHRE, YREER - ARTRENEER
AAT, REREBEKHEASNERES SN, REREEL S LHRELE, Wik
HERELAHE, AUFFENTREFABEALE.

HEHHERHEF
ZOOZ4=ZH

Preface

This book is intended as a textbook for a one- or two-semester course in com-
pilers. Students will see the theory behind different components of a com-
piler, the programming techniques used to put the theory into practice, and
the interfaces used to modularize the compiler. To make the interfaces and
programming examples clear and concrete, we have written them in Java.
Another edition of this book is available that uses the ML language.

Implementation project. The “student project compiler” that we have out-
lined is reasonably simple, but is organized to demonstrate some important
techniques that are now in common use: abstract syntax trees to avoid tan-
gling syntax and semantics, separation of instruction selection from register
allocation, copy propagation to give ﬂeXibi}ity to earlier phases of the com-
piler, and containment of target-machine dependencies. Unlike many *stu-
dent compilers” found in other textbooks, this one has a simple but sophisti-
cated back end, allowing good register allocation to be done after instruction
selection.

This second edition of the book has a redesigned project compiler: It uses
a subset of Java, called MiniJava, as the source language for the compiler
project, it explains the use of the parser generators JavaCC and SableCC, and
it promotes programming with the Visitor pattern. Students using this edition
can implement a compiler for a language they’re familiar with, using standard
tools, in a more object-oriented style.

Each chapter in Part I has a programming exercise corresponding to one
module of a compiler. Software useful for the exercises can be found at
http://uk.cambridge.org/resources/052182060X (outside North America);
http://us.cambridge.org/titles/052182060X.html (within North America).

Exercises. Each chapter has pencil-and-paper exercises; those marked with
a star are more challenging, two-star problems are difficult but solvable, and

ix

PREFACE

the occasional three-star exercises are not known to have a solution.

Course sequence. The figure shows how the chapters depend on each other.

A A
Lexical . Abstract Semantic

2. Analysis ™ 3. Parsing — 4. Syntax 5. Analy SD 5

- 2
6 Activation Translation to Basic Blocks o .
* Records * Intermediate Code * and Traces v S
o
Instructi Putingit &
. o Instruction @

1. ln{r\oductlon 9, Selection — 12, All Together

by

Liveness Register / v
10. Analysis 1L Allocation § v
o .

Static Single-
17. K::;ﬂ:l: — 18, lé;op izations —— 19+ Assignment
Yy \\ Form v os
15, Functional 16, Polymorphic \ 20, Pipelining, @
" Languages— ~ Types * Scheduling E
7]
13 Garbage 14 Object-Oriented 1 Memory

* Collection * Languages * Hierarchies v

e A one-semester course could cover all of Part I (Chapters 1-12), with students
implementing the project compiler (perhaps working in groups); in addition,
lectures could cover selected topics from Part 11.

e An advanced or graduate course could cover Part 1I, as well as additional
topics from the current literature. Many of the Part II chapters can stand inde-
pendently from Part I, so that an advanced course could be taught to students
who have used a different book for their first course.

o In a two-quarter sequence, the first quarter could cover Chapters 1-8, and the
second quarter could cover Chapters 9—12 and some chapters from Part II.

Acknowledgments. Many people have provided constructive criticism or
helped us in other ways on this book. Vidyut Samanta helped tremendously
with both the text and the software for the new edition of the book. We would
also like to thank Leonor Abraido-Fandino, Scott Ananian, Nils Andersen,
Stephen Bailey, Joao Cangussu, Maia Ginsburg, Max Hailperin, David Han-
son, Jeffrey Hsu, David MacQueen, Torben Mogensen, Doug Morgan, Robert
Netzer, Elma Lee Noah, Mikael Petterson, Benjamin Pierce, Todd Proebsting,
Anne Rogers, Barbara Ryder, Amr Sabry, Mooly Sagiv, Zhong Shao, Mary
Lou Soffa, Andrew Tolmach, Kwangkeun Yi, and Kenneth Zadeck.

Contents

Preface

Part] Fundamentals of Compilation

1 Introduction
1.1 Modules and interfaces
1.2 Tools and software
1.3 Data structures for tree languages

2 Lexical Analysis
2.1 Lexical tokens
2.2 Regular expressions
2.3 Finite automata
2.4 Nondeterministic finite automata
2.5 Lexical-analyzer generators

3 Parsing
3.1 Context-free grammars
3.2 Predictive parsing
3.3 LR parsing
3.4 Using parser generators
3.5 Error recovery

4 Abstract Syntax
4.1 Semantic actions
4.2 Abstract parse trees
4.3 Visitors

5 Semantic Analysis
5.1 Symbol tables

ix

~l W AW

16
17
18
21
24
30

38

45
55
68
76

86
86
89
93

103
103

CONTENTS

10

11

12

13

5.2 Type-checking MiniJava

Activation Records
6.1 Stack frames
6.2 Frames in the MiniJava compiler

Translation to Intermediate Code
7.1 Intermediate representation trees
7.2 Translation into trees
7.3 Declarations

Basic Blocks and Traces
8.1 Canonical trees
8.2 Taming conditional branches

Instruction Selection
9.1 Algorithms for instruction selection
9.2 CISC machines
9.3 Instruction selection for the MiniJava compiler

Liveness Analysis
10.1 Solution of dataflow equations
10.2 Liveness in the MiniJava compiler

Register Allocation

11.1 Coloring by simplification

11.2 Coalescing

11.3 Precolored nodes

11.4 Graph-coloring implementation
11.5 Register allocation for trees

Putting It All Together

Part I Advanced Topics

Garbage Collection

13.1 Mark-and-sweep collection
13.2 Reference counts

13.3 Copying collection

111

116
118
126

136
137
140
155

162
163
169

176
179
187
190

203
205
214

219
220
223
227
232
241

249

257
257
262
264

vi

CONTENTS

14

15

16

17

18

13.4
13.5
13.6
13.7

Generational collection
Incremental collection
Baker’s algorithm
Interface to the compiler

Object-Oriented Languages

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Class extension

Single inheritance of data fields
Muiltiple inheritance

Testing class membership

Private fields and methods

Classless languages

Optimizing object-oriented programs

Functional Programming Languages

15.1
15.2
15.3
154
15.5
15.6
15.7

A simple functional language
Closures

Immutable variables

Inline expansion

Closure conversion

Efficient tail recursion

Lazy evaluation

Polymorphic Types

16.1
16.2
16.3
16.4

Parametric polymorphism
Polymorphic type-checking
Translation of polymorphic programs
Resolution of static overloading

Dataflow Analysis

17.1
17.2
17.3
174
17.5

Intermediate representation for flow analysis
Various dataflow analyses

Transformations using dataflow analysis
Speeding up dataflow analysis

Alias analysis

Loop Optimizations

18.1
18.2

Dominators
Loop-invariant computations

269
272
274
275

283
283
284
286
289
292
293
293

298
299
301
302
308
316
319
321

335
336
339
344
347

350
351
354
359
360
369

376
3719
384

CONTENTS

19

21

Appendix: MiniJava Language Reference Manual

18.3
18.4
18.5

Induction variables
Array-bounds checks
Loop unrolling

Static Single-Assignment Form

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Converting to SSA form

Efficient computation of the dominator tree
Optimization algorithms using SSA
Arrays, pointers, and memory

The control-dependence graph

Converting back from SSA form

A functional intermediate form

Pipelining and Scheduling

20.1
20.2
20.3

Loop scheduling without resource bounds
Resource-bounded loop pipelining
Branch prediction

The Memory Hierarchy

21.1

Cache organization

21.2 Cache-block alignment

21.3

Prefetching

214 Loop interchange
21.5 Blocking

21.6 Garbage collection and the memory hierarchy

Al

Lexical Issues

A2 Grammar
A3 Sample Program

Bibliography

Index

385
391
395

399
402
410
417
423
425
428
430

440

448
456

464
465
468
470
476
477
480

484
484
484
486

487

495

PART ONE

Fundamentals of
Compilation

1

Introduction

A compiler was originally a program that “compiled”
subroutines [a link-loader]. When in 1954 the combina-
tion “algebraic compiler” came into use, or rather into
misuse, the meaning of the term had already shifted into
the present one.

Bauer and Eickel [1975]

This book describes techniques, data structures, and algorithms for translating
programming languages into executable code. A modern compiler is often or-
ganized into many phases, each operating on a different abstract “language.”
The chapters of this book follow the organization of a compiler, each covering
a successive phase.

To illustrate the issues in compiling real programming languages, we show
how to compile MiniJava, a simple but nontrivial subset of Java. Program-
ming exercises in each chapter call for the implementation of the correspond-
ing phase; a student who implements all the phases described in Part I of the
book will have a working compiler. MiniJava is easily extended to support
class extension or higher-order functions, and exercises in Part II show how
to do this. Other chapters in Part Il cover advanced techniques in program
optimization. Appendix A describes the MiniJava language.

The interfaces between modules of the compiler are almost as important
as the algorithms inside the modules. To describe the interfaces concretely,
it is useful to write them down in a real programming language. This book
uses Java - a simple object-oriented language. Java is safe, in that programs
cannot circumvent the type system to violate abstractions; and it has garbage
collection, which greatly simplifies the management of dynamic storage al-

3

CHAPTER ONE. INTRODUCTION

Environ-
ments
§ S
s “ S Tables
SERE S > 3 g g s
< N = i bl e | = v Q :
] S| Parsing | |Semantic |5 » | Canon- | & | Instruction | ¥
Q;, Lex "§ Parse X | Actions g Analysis § Translate | & icalize |®| Selection 2
o = 3 = < & & <
3 & 3 &~ ~ ~
3 = Frame
% <
Frame
Layout
v
=
k] S
= S % S)
3 g g -)
-~ = 3 %) =
3 S 5 > S F
§| Control | &\ Data | n| p . B Cod 3 S 5
2| Flow |Of Flow |8 Aneglstgr 2 ode Assembler | Q | Linker | 3
é Analysis % Analysis g ocation N Emission § % .§
S < 3 : §—%
X S0 © S I
S S 2 g =
x < S
<
FIGURE 1.1. Phases of a compiler, and interfaces between them.

1.1

location. Both of these properties are useful in writing compilers (and almost
any kind of software).

This is not a textbook on Java programming. Students using this book who
do not know Java already should pick it up as they go along, using a Java
programming book as a reference. Java is a small enough language, with
simple enough concepts, that this should not be difficult for students with
good programming skills in other languages.

MODULES AND INTERFACES

Any large software system is much easier to understand and implement if
the designer takes care with the fundamental abstractions and interfaces. Fig-
ure 1.1 shows the phases in a typical compiler. Each phase is implemented as
one or more software modules.

Breaking the compiler into this many pieces allows for reuse of the compo-
nents. For example, to change the target machine for which the compiler pro-

1.2. TOOLS AND SOFTWARE

1.2

duces machine language, it suffices to replace just the Frame Layout and In-
struction Selection modules. To change the source language being compiled,
only the modules up through Translate need to be changed. The compiler
can be attached to a language-oriented syntax editor at the Abstract Syntax
interface.

The learning experience of coming to the right abstraction by several itera-
tions of think—implement—redesign is one that should not be missed. However,
the student trying to finish a compiler project in one semester does not have
this luxury. Therefore, we present in this book the outline of a project where
the abstractions and interfaces are carefully thought out, and are as elegant
and general as we are able to make them.

Some of the interfaces, such as Abstract Syntax, IR Trees, and Assem, take
the form of data structures: For example, the Parsing Actions phase builds an
Abstract Syntax data structure and passes it to the Semantic Analysis phase.
Other interfaces are abstract data types; the Translate interface is a set of
functions that the Semantic Analysis phase can call, and the Tokens interface
takes the form of a function that the Parser calls to get the next token of the
input program.

DESCRIPTION OF THE PHASES
Each chapter of Part I of this book describes one compiler phase, as shown in
Table 1.2

This modularization is typical of many real compilers. But some compil-
ers combine Parse, Semantic Analysis, Translate, and Canonicalize into one
phase; others put Instruction Selection much later than we have done, and
combine it with Code Emission. Simple compilers omit the Control Flow
Analysis, Data Flow Analysis, and Register Allocation phases.

We have designed the compiler in this book to be as simple as possible, but
no simpler. In particular, in those places where corners are cut to simplify the
implementation, the structure of the compiler allows for the addition of more
optimization or fancier semantics without violence to the existing interfaces.

TOOLS AND SOFTWARE

Two of the most useful abstractions used in modem compilers are context-
free grammars, for parsing, and regular expressions, for lexical analysis. To
make the best use of these abstractions it is helpful to have special tools,

5

CHAPTER ONE. INTRODUCTION

Chapter Phase Description

2 Lex Break the source file into individual words, or tokens.

3 Parse Analyze the phrase structure of the program.

4 Semantic Build a piece of abstract syntax tree corresponding to each

Actions phrase.
5 Semantic Determine what each phrase means, relate uses of variables to
Analysis their definitions, check types of expressions, request translation
of each phrase.
6 Frame Place variables, function-parameters, etc. into activation records
Layout (stack frames) in a machine-dependent way.

7 Translate Produce intermediate representation trees (IR trees), a nota-
tion that is not tied to any particular source language or target-
machine architecture.

8 Canonicalize = Hoist side effects out of expressions, and clean up conditional
branches, for the convenience of the next phases.

9 Instruction Group the IR-tree nodes into clumps that correspond to the ac-

Selection tions of target-machine instructions.

10 Control Analyze the sequence of instructions into a control flow graph
Flow that shows all the possible flows of control the program might
Analysis follow when it executes.

10 Dataflow Gather information about the flow of information through vari-
Analysis ables of the program; for example, liveness analysis calculates

the places where each program variable holds a still-needed value
(is live).

11 Register Choose a register to hold each of the variables and temporary
Allocation values used by the program; variables not live at the same time

can share the same register.

12 Code Replace the temporary names in each machine instruction with
Emission machine registers.

TABLE 1.2, Description of compiler phases.

such as Yacc (which converts a grammar into a parsing program) and Lex
(which converts a declarative specification into a lexical-analysis program).
Fortunately, such tools are available for Java, and the project described in this
book makes use of them.

The programming projects in this book can be compiled using any Java

