
QUANTUM OPTICS

MARLAN O.SCULLY AND M.SUHAIL ZUBAIRY

量子光学

CAMBRIDGE 光界图出出版公司

Quantum optics

Marlan O. Scully
Texas A&M University and Max-Planck-Institut für Quantenoptik

M. Suhail Zubairy
Ouaid-i-Azam University

CAMBRIDGE UNIVERSITY PRESS

冯界图出出版公司

书 名: Quantum Optics

作 者: M. O. Scully, M. S. Zubairy

中 译 名: 量子光学

出版者:世界图书出版公司北京公司

印刷者:北京中西印刷厂。

发 行: 世界图书出版公司北京公司 (北京朝内大街 137 号 100010)

开 本: 1/24 711×1245 印 张: 27.5

出版年代: 2000年 4月

书 号: ISBN 7-5062-4966-9/O・317

版权登记:图字 01-2000-0852

定 价: 98.00 元

世界图书出版公司北京公司已获得 Cambridge University Press 授权在中国 大陆独家重印发行。 PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, United Kingdom 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1997

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1997

Printed in the United Kingdom at the University Press, Cambridge

Typeset in 10 on 13pt Times

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Scully, Marlan O. (Marlan Orvil), 1939-

Quantum optics / Marlan O. Scully and M. Suhail Zubairy.

p. cm.

Includes bibliographical references and index.

ISBN 0 521 43458 0. - ISBN 0 521 43595 1 (pbk.)

1. Quantum optics. I. Zubairy, Muhammad Suhail, 1952-

II. Title.

OC446.2.S4 1996

535-dc20 94-42949 CIP

ISBN 0 521 43458 0 hardback ISBN 0 521 43595 1 paperback

This edition of Quantum Optics by Marlan Scully and M Suhail Zubairy is published by arrangement with the Syndicate of the Press of University of Cambridge, Cambridge, England.

Licensed edition for sale in the People's Republic of China only. Not for export elsewhere.

The field of quantum optics has witnessed significant developments in recent years, from the laboratory realization of counter-intuitive concepts such as lasing without inversion and micromasers, to the investigation of fundamental issues in quantum mechanics, such as complementarity and hidden variables. This book provides an in-depth and wide-ranging introduction to the subject of quantum optics, emphasizing throughout the basic principles and their applications.

The book begins by developing the basic tools of quantum optics, and goes on to show the application of these tools in a variety of quantum optical systems, including resonance fluorescence, lasers, micromasers, squeezed states, and atom optics. The final four chapters are devoted to a discussion of quantum optical tests of the foundations of quantum mechanics, and particular aspects of measurement theory.

Assuming only a background of standard quantum mechanics and electromagnetic theory, and containing many problems and references, this book will be invaluable to graduate students of quantum optics, as well as to established researchers in this field. Marlan O. Scully has received numerous honors as a result of his many pioneering contributions as a researcher and educator on both sides of the Atlantic. These include: the Adolph Lomb Medal of the Optical Society of America, the Elliot Cresson Medal of the Franklin Society, Guggenheim Fellowship, and the Alexander von Humboldt Award. He is an elected member of the Max-Planck Society and a Fellow of the American Physical Society, the Optical Society of America, and the American Association of the Advancement of Science. He has held the faculty positions at Yale, MIT, University of Arizona, University of New Mexico and is currently Burgess Distinguished Professor of Physics, Director of the Center for Theoretical Physics at Texas A&M University, Co-Director of the Texas Laser Lab., and Auswrtiges Wissenschaftliches Mitglied at the Max-Planck Institut für Quantenoptik.

M. Suhail Zubairy received his PhD degree from the University of Rochester in 1978. He held research and faculty positions at the University of Rochester, University of Arizona, and the University of New Mexico before joining the Quaid-i-Azam University, Islamabad in 1984 where he is presently a Professor and founding Chairman of the Department of Electronics. He has held visiting appointments at the Max-Planck Institut für Quantenoptik, Universität Ulm, University of New Mexico, and the University of Campinas. He has been an Associate Member of the International Centre for Theoretical Physics, Trieste. He was awarded the Order of Sitara-e-Imtiaz by the President of Pakistan in 1993. He has received the Salam Prize for Physics and a Gold Medal from the Pakistan Academy of Sciences. He is a Fellow of the Pakistan Academy of Sciences and the Optical Society of America.

To

Thelma T. Scully and Naseem Fatima Zubairy

and to the memory of

Orvil O. Scully and Muhibul Islam Zubairy

Preface

Quantum optics, the union of quantum field theory and physical optics, is undergoing a time of revolutionary change. The subject has evolved from early studies on the coherence properties of radiation like, for example, quantum statistical theories of the laser in the sixties to modern areas of study involving, for example, the role of squeezed states of the radiation field and atomic coherence in quenching quantum noise in interferometry and optical amplifiers. On the one hand, counter intuitive concepts such as lasing without inversion and single atom (micro) masers and lasers are now laboratory realities. Many of these techniques hold promise for new devices whose sensitivity goes well beyond the standard quantum limits. On the other hand, quantum optics provides a powerful new probe for addressing fundamental issues of quantum mechanics such as complementarity, hidden variables, and other aspects central to the foundations of quantum physics and philosophy.

The intent of this book is to present these and many other exciting developments in the field of quantum optics to students and scientists, with an emphasis on fundamental concepts and their applications, so as to enable the students to perform independent research in this field. The book (which has developed from our lectures on the subject at various universities, research institutes, and summer schools) may be used as a textbook for beginning graduate students with some background in standard quantum mechanics and electromagnetic theory. Each chapter is supplemented by problems and general references. Some of the problems rely heavily on the treatment given in a research paper, leading students directly to the scientific literature. The role of the references is to identify original papers, and to refer the reader to

review articles and related papers for in-depth study. No attempt is made to give an exhaustive list of references.

The book is divided roughly into three parts. In the first six chapters, we develop the 'tools' of quantum optics. In the next eleven chapters, these 'tools' are applied to various quantum optical systems. In the last four chapters, we consider the application of modern quantum optical physics to testing the foundations of quantum mechanics.

The book opens with the presentation of the quantization of the radiation field by associating each mode of the field with a quantized harmonic oscillator. The strong motivation to quantize the radiation field in many quantum optical systems comes from phenomena such as quantum beats, two-photon interferometry, and the generation of nonclassical states of the radiation field, e.g., Fock states. Some of these phenomena shed new light on our understanding of the elusive concept of the photon. In the first part of the book, we discuss the various states of the radiation field, e.g., coherent and squeezed states. and introduce the distribution functions of the field which form a correspondence between the quantum and the classical theories of radiation. We then develop a quantum theory of coherence in terms of the correlation functions of the field, which provides a framework for discussing the outcome of interferometric experiments. We proceed to develop the semiclassical and quantum theories of the interaction of the radiation field with matter, with an emphasis on formulating a theoretical framework directed toward understanding the many faceted problems of modern quantum optics.

In the second part, we use this theoretical framework to develop theories of atomic and field damping, resonance fluorescence, laser and micromaser operation, and the study of the quantum noise properties of such nonlinear optical processes as parametric amplification and four-wave mixing. Atomic coherence effects in many novel systems are discussed in detail. For example, the role of atomic coherence in suppressing absorption leads to interesting effects such as lasing without inversion and electromagnetically induced transparency. Atomic coherence can also play a role in quenching Schawlow-Townes spontaneous emission noise in lasers, as in the correlated emission laser (CEL). Such CEL systems have potential applications in, e.g., laser gyro physics and 'noise-free' amplification.

In the third part, we move on to the application of modern quantum optical physics to fundamental questions related to the foundation of quantum mechanics. These include Bell's theorem, quantum nondemolition measurements, 'which-path' detectors, and two-photon interferometry.

We have benefited greatly from our interaction with many of our colleagues, friends, and students in the preparation of this book. They are too numerous to be individually acknowledged and we are able to express our gratitude to only a few of them here.

We would especially like to thank Stephen Harris, Willis Lamb, Julian Schwinger, and Herbert Walther, who have strongly influenced our thinking through their profound contributions to physics in general and many fruitful collaborations in particular. Their imprint on this book is evident: but for them, entire chapters would be missing. We are grateful to Peter Knight for providing the encouragement for writing this book. Critical comments from and helpful discussions with him and with Girish Agarwal, Richard Arnowitt, Chris Bednar, Janos Bergou, Leon Cohen, Jonathan Dowling, Joe Eberly, Michael Fleischhauer, Edward Fry, Julio Gea-Banacloche, Roy Glauber, Trung-Dung Ho, Hwang Lee, Lorenzo Narducci, Robert O'Connell, Norman Ramsey, Ulrich Rathe, Wolfgang Schleich, Krzysztof Wodkiewicz, Bernand Yurke, and Shi-Yao Zhu provided invaluable assistance concerning many subtle points. One of us (MSZ) would like to express his gratitude to the Pakistan Atomic Energy Commission for the financial support over the years, and particularly its Chairman, Ishfaq Ahmad, for his deep interest and commitment that played a vital role in the completion of this project. MOS would like to acknowledge the support of the Office of Naval Research, and particularly Herschel Pilloff, whose wisdom and dedication to scientific excellence have resulted in many successful joint projects and conferences which have had a marked impact on this book. The support of the Houston Advanced Research Center (HARC), and the Welch Foundation is also deeply appreciated. We thank Jeanne Williams for the careful typing in TrX, and Jim and Andrey Bailey for the hospitality of the Bailey ranch, where the manuscript was completed.

Finally, we are grateful to our family members, Judith, James, Debra, Robert, Steven, and Jacquelyn, and Parveen, Sarah, Sahar, and Raheel, for their support, and understanding, especially during the extended absences in the course of the last decade, when this book was contemplated, planned, and written.

Marlan O. Scully M. Suhail Zubairy

Contents

Pr	eface		xix
ı	Oua	ntum theory of radiation	1
	1.1	Ouantization of the free electromagnetic field	2
		1.1.1 Mode expansion of the field	3
		1.1.2 Quantization	4
		1.1.3 Commutation relations between electric and magnetic	
		field components	7
	1.2	Fock or number states	9
	1.3	Lamb shift	13
	1.4	Quantum beats	16
	1.5	What is light? - The photon concept	20
		1.5.1 Vacuum fluctuations and the photon concept	20
		1.5.2 Vacuum fluctuations	22
		1.5.3 Quantum beats, the quantum eraser, Bell's theorem,	
		and more	24
		1.5.4 'Wave function for photons'	24
	1.A	Equivalence between a many-particle Bose gas and a	
		set of quantized harmonic oscillators	35
	Proi	blems	40
	Refe	erences and bibliography	43
2	Coherent and squeezed states of the radiation field		
	2.1	Radiation from a classical current	48
	2.2	The coherent state as an eigenstate of the annihilation	
		operator and as a displaced harmonic oscillator state	50
	2.3		51
	2.4	Some properties of coherent states	54
	2.5	Squeezed state physics	56

viii Contents

	2.6	Squee	ezed states and the uncertainty relation	60
	2.7	The s	queeze operator and the squeezed coherent states	63
			Quadrature variance	65
	2.8	Multi	i-mode squeezing	66
	Prob	olems	•	67
	Refe	rences	and bibliography	70
3	Qua	ntum (distribution theory and partially coherent radiation	72
	3.1	Cohe	rent state representation	73
		3.1.1	Definition of the coherent state representation	75
		3.1.2	Examples of the coherent state representation	77
	3.2	Q-rep	presentation	79
	3.3	The V	Wigner-Weyl distribution	81
	3.4	Gene	ralized representation of the density operator and	
		conne	ection between the P -, Q -, and W -distributions	83
	3.5	<i>Q</i> -гер	presentation for a squeezed coherent state	86
	3.A	Verify	ying equations (3.1.12a, 3.1.12b)	90
	3.B	c-nun	nber function correspondence for the Wigner-	
		Weyl	distribution	92
	Prol	blems		94
	Refe	erences	and bibliography	96
4	Fiel	d-field	and photon-photon interferometry	97
	4.1	The i	interferometer as a cosmic probe	98
		4.1.1	Michelson interferometer and general relativity	98
		4.1.2	The Sagnac ring interferometer	101
		4.1.3	Proposed ring laser test of metric gravitation theories	106
		4.1.4	The Michelson stellar interferometer	108
		4.1.5	Hanbury-Brown-Twiss interferometer	110
	4.2	Photo	on detection and quantum coherence functions	111
	4.3	First-	order coherence and Young-type double-source	
		exper	riments	115
		4.3.1	Young's double-slit experiment	115
		4.3.2	Young's experiment with light from two atoms	119
	4.4	Seco	nd-order coherence	120
		4.4.1	The physics behind the Hanbury-Brown-Twiss effect	121
		4.4.2	Detection and measurement of squeezed states via	
			homodyne detection	125
		4.4.3	Interference of two photons	131
		4.4.4	Photon antibunching, Poissonian, and sub-Poissonian	
			light	134
	4.5	Photo	on counting and photon statistics	137

ix

	4.A	Classical and quantum descriptions of two-source	120	
	4.5	interference	139	
	4.B	Calculation of the second-order correlation function	140 141	
		olems	141	
	кеје	rences and bibliography	143	
5	Atom-field interaction - semiclassical theory			
	5.1	Atom-field interaction Hamiltonian	146	
		5.1.1 Local gauge (phase) invariance and minimal-coupling		
		Hamiltonian	146	
		5.1.2 Dipole approximation and r · E Hamiltonian	148	
		5.1.3 p · A Hamiltonian	149	
	5.2	Interaction of a single two-level atom with a single-		
		mode field	151	
		5.2.1 Probability amplitude method	151	
		5.2.2 Interaction picture	155	
		5.2.3 Beyond the rotating-wave approximation	158	
	5.3	Density matrix for a two-level atom	160	
		5.3.1 Equation of motion for the density matrix	161	
		5.3.2 Two-level atom	162	
		5.3.3 Inclusion of elastic collisions between atoms	163	
	5.4	Maxwell-Schrödinger equations	164	
		5.4.1 Population matrix and its equation of motion	165	
		5.4.2 Maxwell's equations for slowly varying field functions	166	
	5.5	•	168	
		5.5.1 Basic principle	169	
		5.5.2 Lamb's semiclassical theory	169	
	5.6	A physical picture of stimulated emission and		
		absorption	173	
		Time delay spectroscopy	174	
	5.A	Equivalence of the $\mathbf{r} \cdot \mathbf{E}$ and the $\mathbf{p} \cdot \mathbf{A}$ interaction	170	
		Hamiltonians	178	
		5.A.1 Form-invariant physical quantities	178	
		5.A.2 Transition probabilities in a two-level atom	180	
		Vector model of the density matrix	183	
	5.C		185	
	_	universe		
		blems	187 190	
	,	erences and bibliography	130	
6	Ato	m–field interaction – quantum theory	193	
	6.1	Atom-field interaction Hamiltonian	194	

x Contents

	6.2	Interaction of a single two-level atom with a single- mode field	196
		6.2.1 Probability amplitude method	197
		6.2.2 Heisenberg operator method	202
		6.2.3 Unitary time-evolution operator method	204
	6.3	•	201
	0.0	between two atomic levels	206
	6.4		210
	6.5	-	
		excitation events	213
	Pro	blems	215
	Refe	erences and bibliography	217
7	Lasi	ing without inversion and other effects of atomic	
		erence and interference	220
	7.1	The Hanle effect	221
	7.2	Coherent trapping - dark states	222
	7.3	Electromagnetically induced transparency	225
	7.4	Lasing without inversion	230
		7.4.1 The LWI concept	230
		7.4.2 The laser physics approach to LWI: simple treatment	232
		7.4.3 LWI analysis	233
	7.5	Refractive index enhancement via quantum coherence	236
	7.6	Coherent trapping, lasing without inversion, and	
		electromagnetically induced transparency via an exact	
		solution to a simple model	241
	Prol	blems	244
	Refe	erences and bibliography	245
8	Qua	ntum theory of damping - density operator and wave	
	func	tion approach	248
	8.1	General reservoir theory	249
	8.2	Atomic decay by thermal and squeezed vacuum	
		reservoirs	250
		8.2.1 Thermal reservoir	251
		8.2.2 Squeezed vacuum reservoir	253
		Field damping	255
	8.4	Fokker-Planck equation	256
	8.5	The 'quantum jump' approach to damping	260
		8.5.1 Conditional density matrices and the null measurement	261
		8.5.2 The wave function Monte Carlo approach to damping	263

	Prob	lems		267	
	Refe	rences a	nd bibliography	269	
9	Quantum theory of damping - Heisenberg-Langevin approach				
	9.1		treatment of damping via oscillator reservoir:	272	
	9.2		ed treatment of damping via atom and oscillator	212	
	7.2		irs: non-Markovian colored noise	276	
			An atomic reservoir approach	276	
			a generalized treatment of the oscillator reservoir	270	
			problem	278	
	9.3	•	ons of motion for the field correlation functions	281	
		_	Fluctuation—dissipation theorem and the Einstein		
		relation		283	
	9.5	Atom i	n a damped cavity	284	
	Prob	lems		289	
	References and bibliography			290	
10	Resonance fluorescence				
	10.1	Electri	ic field operator for spontaneous emission		
			a single atom	292	
	10.2 An introduction to the resonance fluorescence				
		spectr	um	293	
		10.2.1	Weak driving field limit	293	
		10.2.2	The strong field limit: sidebands appear	295	
		10.2.3	The state of the s		
			field limit	296	
	10.3		y of a spectrum analyzer	298	
	10.4		single-time to two-time averages: the Onsager-		
	40.5		egression theorem	300	
	10.5		omplete resonance fluorescence spectrum	302	
		10.5.1	Weak field limit	305	
	10.6	10.5.2	Strong field limit	305	
	10.6		n antibunching	307	
	10.7		ance fluorescence from a driven V system	309	
			ic field operator in the far-zone approximation	311	
	10.B		quations of motion for and exact solution of the	216	
		10.B.1	y matrix in a dressed-state basis	316	
		10.D.I	Deriving the equation of motion in the dressed-state basis	316	
		10.B.2	Solving the equations of motion	317	
		10.13.2	Solving the equations of motion	21/	

	10.C	The equations of motion for and exact solution of the	
		density matrix in the bare-state basis	320
	10.D	Power spectrum in the stationary regime	321
	10.E	Derivation of Eq. (10.7.5)	322
	Probl	ems	323
	Refer	ences and bibliography	325
11	Quan	tum theory of the laser - density operator approach	327
	11.1	Equation of motion for the density matrix	328
	11.2	Laser photon statistics	336
		11.2.1 Linear approximation ($\mathcal{B} = 0$)	337
		11.2.2 Far above threshold ($\mathscr{A} \gg \mathscr{C}$)	338
		11.2.3 Exact solution	338
	11.3	P-representation of the laser	340
	11.4	Natural linewidth	341
		11.4.1 Phase diffusion model	342
		11.4.2 Fokker-Planck equation and laser linewidth	345
	11.5	Off-diagonal elements and laser linewidth	346
	11.6		
		order phase transition	349
	11.A	Solution of the equations for the density matrix	
		elements	352
	11.B	An exact solution for the P-representation of the laser	354
	Prob	lems	358
	Refe	rences and bibliography	360
12	Qua	ntum theory of the laser - Heisenberg-Langevin approach	362
	12.1	A simple Langevin treatment of the laser linewidth	
		including atomic memory effects	362
	12.2	Quantum Langevin equations	367
	12.3		373
	12.4	Photon statistics and laser linewidth	376
	Prob	olems	380
	Refe	rences and bibliography	381
13	3 The	ory of the micromaser	383
	13.1	Equation of motion for the field density matrix	384
	13.2	Steady-state photon statistics	386
	13.3	Preparation of number state in a high-Q micromaser	389
		13.3.1 State reduction	390
		13.3.2 Trapping states	393
	13.4		396

	Proble	ems	398
	Refere	ences and bibliography	400
14	Correlated emission laser: concept, theory, and analysis		
	14.1	Correlated spontaneous emission laser concept	403
	14.2	Hanle effect correlated emission laser via density	
		matrix analysis	405
	14.3	Quantum beat laser via pictorial treatment	413
	14.4	Holographic laser	418
	14.5	Quantum phase and amplitude fluctuations	423
	14.6	Two-photon correlated emission laser	426
		14.6.1 Theory	426
		14.6.2 Heuristic account of a two-photon CEL	430
	14.A	Spontaneous emission noise in the quantum beat laser	433
	Probl	ems	437
	Refer	ences and bibliography	440
15	Phase sensitivity in quantum optical systems: applications		
	15.1	The CEL gyro	442
	15.2	Linear amplification process: general description	446
	15.3	Phase-insensitive amplification in a two-level system	448
	15.4	Phase-sensitive amplification via the two-photon	
		CEL: noise-free amplification	450
	15.5	Laser with an injected squeezed vacuum	452
	15.A	Analysis of the CEL gyro with reinjection	454
	Probl	ems	457
	Refer	ences and bibliography	458
16	Squee	zing via nonlinear optical processes	460
	16.1	Degenerate parametric amplification	460
	16.2	Squeezing in an optical parametric oscillator	463
	16.3	Squeezing in the output of a cavity field	467
	16.4	Four-wave mixing	471
		16.4.1 Amplification and oscillation in four-wave mixing	471
		16.4.2 Squeezing in four-wave mixing	475
	16.A	Effect of pump phase fluctuations on squeezing in	
		degenerate parametric amplification	476
	16.B	Quantized field treatment of input-output formalism	
		leading to Eq. (16.3.4)	480
	Probl	ems	482
	Refer	ences and hibliography	484