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Estrogen and Antiestrogen Effects on Thymidine
Utilization by MCF-7 Human Breast Cancer Cells
in Tissue Culture

Marc E. Lippman and Susan C. Aitken

Medicine Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland 20205

While incorporation of radioactive thymidine into acid-insoluble material is
probably the most common method employed to estimate DNA synthesis, it
may lead to erroneous conclusions. Conflicting data on the effects of estrogen
on proliferation in MCF-7 cells made us wonder whether a more detailed analysis
of precursor incorporation might elucidate some of the problems. A number
of serious difficulties complicate the interpretation of incorporation data using
this high specific activity trace.

First, the accurate determination of the true specific activity of labeled precur-
sor in every experimental situation is critical.

Second, feedback (both positive and negative) by thymidine on a variety of
key enzymatic steps in pyrimidine synthesis which affect its own utilization
can occur. This is further complicated by the fact that intracellular-thymidine
pools are relatively small. Consequently, addition of even small amounts of
trace may seriously perturb the experimental system.

Third, deoxynucleotide pools may be compartmentalized intracellularly and
differential incorporation of salvage and de novo derived thymidine may prevent
legitimate projections to net DNA synthetic rates.

Fourth, and finally it is possible that metabolism of labeled precursor to
products capable of eventual incorporation into material which is not DNA
may occur.

The experiments summarized here are directed toward an accurate assessment
of the role of the salvage pathway of pyrimidine synthesis and utilization in
the response of the MCF-7 cell line to administration of estrogens and antiestro-
gens.

MATERIALS AND METHODS

MCEF-7 cells, maintained in continuous tissue culture, were repeatedly shown
to be free of mycoplasma contamination during this study. Conditions of culture
have been previously described (1). Cells underwent two passages in IMEM
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supplemented with 2.5% charcoal-treated calf serum and 1077 moles/liter insulin
prior to replicate plating in four or six well tissue culture dishes. When cells
became subconfluent medium was replaced with IMEM containing 107° moles/
liter phosphate and lacking asparagine. This reduction in phosphate content is
necessary to obtain substantial incorporation of [32P]P; into DNA. These experi-
mental conditions do not affect growth curves or incorporation of radioactive
precursors into macromolecular components of MCF-7 cells during the limited
duration of these experiments (1). Four to twelve hr later medium was replaced
with IMEM (107® moles/liter P;), estradiol (5 X 1072 moles/liter), or tamoxifen
(2 X 107% moles/liter).

Before harvest, cells were incubated for 6 or 8 hr with [3?P]P; (1 pnCi/ml)
and/or [*H]dThd (1-10 pCi/ml, 42-46 pCi/mmole) for a 2-hr period. The
necessity for such a labeling procedure lies in the relatively long equilibration
period required for [32P]P; in this experimental system and the known perturba-
tion of the system produced by radioactive thymidine. The details of any given
experiment are described in Results.

An outline for the fractionation procedure for cell pellets following harvest
can be found in Fig. 1. Detailed validation of fractionation and isolation method-
ologies will be found elsewhere (1).

CELL:’ELLET
sonicate
(protein determination)
5% PCA 10% TCA RNAase + pronase
centrifuge filter incubation
supernatant = acid- total acid- partially hydrolyzed sonicate
soluble fraction precipitable .
(dpm, inorganic PQ,) material ethidium hydroxyapatite
" (dpm) bromide chromatography
precipitate charcoal
centrifuge DNA DNA
5% PCA (mass) (dpm)
110° supemnatant = /norganic PO,
2 hr (dpm, inorganic PO,)
hydrolyzed DNA +
KOH precipitate = nucleotides + phosphorylated sugars
centrifuge .
ammoniacal EtOH
supernatant = nucleotides centrifuge
of hydrolyzed DNA supernatant = nucleotides
Iyt_)phi!ize lyophilize
thin-layer chromatography thin-layer chromatography

dCMP, dTMP, dGMP, dAMP dTMP
(dpm) (dpm, inorganic PO,)

FIG. 1. Fractionation procedure used for examination of DNA synthesis in MCF-7 cells.
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PARAMETERS

M Size of intracellular pool

a rate of entry of label into intracellular pool

b rate of exit of label from intracellular pool
VARIABLES

L dependent variable - amount of label in

intracellular pool at any time t

t independent variable - time after addition of label
EQUATIONS
L(t) = M + (a-b)t -M(1+((a-b)/M)t)-b/(a-b)) condition a # b
L(t)= M(1-exp(-at/M)) condition a = b
S(t) = L(t)/(M + (a-b)t) S = % of pool saturation

FIG. 2. Terms and equations related to kinetic analyses (MLAB) of incorporation data.

Kinetic analyses were based on the determination of radioactivity incorporated
into acid-soluble fractions and DNA versus time. The coupling of such experi-
ments with a modified isotope dilution technique (7) and subsequent analysis
utilizing the NIH DEC-10 computer system and programming package MLAB
(4) as previously described (1) permitted accurate measurement of thymidine
pool size and analysis of thymidine kinetics. The parameters employed in the
MLAB analysis are shown in Fig. 2. The precise details of such experiments
will be presented in Results.

RESULTS

Three conditions are essential to the accurate use of thymidine in monitoring
DNA synthetic rates: (a) exogenous dThd must be in equilibrium with intracellu-
lar precursor pools; (b) the true specific activity of thymidine in the system
must be available; and (c) the perturbation of the system due to addition of
trace must be appropriately controlled. A series of experiments relating to each
of these conditions will be presented employing MCF-7 human breast cancer
cells.

To establish the time required for equilibration of exogenous [*H]dThd with
precursor thymidine pools, the time course of incorporation of label into acid-
soluble pools (Fig. 3A) and DNA (Fig. 3B) under varying experimental condi-
tions was first examined. At time O [PH]dThd was added to all wells and cells
harvested at varying times thereafter. The time course of uptake of label into
the acid-soluble pool of MCF-7 cells was between 1 and 60 min and is seen
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FIG. 3. A: Incorporation of 3H dThd into the acid-soluble pool of MCF-7 cells. Cells were
transferred to 1075 moles/liter phosphate medium hormones (108 moles/liter estradiol, 108
moles/liter estradiol + 2 X 10~ moles/liter tamoxifen) 32 hr prior to addition of [*H]dThd
(2 nCi/ml). Cells were harvested at the times indicated following addition of label. Values are
the mean of two determinations and are normalized per unit protein. Standard deviations
are presented only for control cells but did not exceed 10% for any group of samples.

10

[3H] THYMIDINE IN DNA
(dpm (x 104)

TIME (minutes)

FIG. 3. B: Incorporation of [3H]dThd into DNA of MCF-7 cells. Incorporation into DNA was
determined by acid-precipitation on millipore filters. Values were normalized per unit protein
and are presented as the mean of two determinations. Standard deviations are shown only
for controls but were similar in all experimental groups.
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FIG. 3. C: Incorporation of [3H]dThd into DNA and acid-soluble pool of MCF-7 cells. Cells
were treated as previously described but were placed in 105 moles/liter phosphate medium
24 hr prior to addition of [*H]dThd at time 0. Two separate experiments representing a short
period of study (1-60 min and a longer time period (0.5-8 hr) are depicted. The latter is
shown as an inset. In both experiments values are normalized per unit protein and are the
average of three determinations = 1 SD. DNA (circles) and acid-soluble (squares) fractions
were isolated as previously described.
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FIG. 3. D: Saturation curve for incor-
poration of [*H]dThd into acid-soluble
pool of MCF-7 cells. Data obtained
as described in Fig. 3A (dpm/mg pro-
tein) were fitted to the function L(t)
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in Fig. 3A. Constant radioactivity was observed with 20 min of exposure to
radioactive trace. No significant differences in the amount of label accumulating
at equilibrium as a consequence of hormone treatment were detected. The incor-
poration of [*H]dThd into partially purified DNA is presented in Fig. 3B. Incor-
poration became linear within 20 min, again suggesting that equilibration of
the thymidine precursor pool for DNA synthesis had been attained. Figure
3B shows that both estrogen-treated and tamoxifen-treated cells displayed a
higher rate of incorporation of dThd into DNA than did control cells. An
explanation for this paradoxical observation following tamoxifen treatment—a
condition long known to produce inhibition of thymidine incorporation (5,9)—
is presented below.

The kinetics of incorporation of thymidine over a more extended time period
are shown in Fig. 3C. Equilibrium conditions were maintained for the 8 hr of
exposure to trace. Only the results observed in control cells are presented; how-
ever, a similar stability was evident in estrogen- and tamoxifen-treated MCF-
7 cells. Figures 3A—C show that the 2-hr labeling period (which will be employed
in subsequent experiments) satisfies the first condition of this study: equilibration
of thymidine precursor pools within the time frame of a given experiment.

The next series of experiments to be discussed involve detailed kinetic analysis
of thymidine pools employing three distinct analytic techniques: (a) MLAB
(4); (b) linear regression analysis of incorporation into acid-soluble pools and
DNA; and (c) a modified isotope dilution procedure (7). The MLAB computer
programming package for graphic display and modeling of kinetic data and
the equations developed by Cooper for two compartment systems (2) constitute
the first approach to the complex issue of thymidine pools. MCF-7 cells are
experimentally treated as previously described. The incorporation of label into
the acid-soluble pool of control cells versus time (1-60 min) is fit to a function
representing a two compartment system in which rate of entry and exit of
label are approximately equal. Such a fit is shown in Fig. 3D for untreated
MCEF-7 cells. The excellent fit of data and function suggest that this program
can yield significant information on the utilization of exogenous thymidine
through the salvage pathway in MCF-7 cells. The parameters that can be defined
by such computer assisted analysis (Fig. 2) include pool size (M) and rate of
entry (a) and exit (b) of thymidine from the total acid-soluble pool.

Linear regression analysis can also be applied to incorporation data for label
in acid-soluble pools and DNA versus time (Fig. 3A and 3B). The slopes of
these lines (dpm/min) indicate the rate of incorporation of label. In the case
of the acid-soluble pool, the initial velocity of the incorporation is of interest
and only the earliest time points can be employed. In the case of incorporation
into DNA, only the period of linearity at later time points is of interest.

However, neither MLAB analysis nor the linear regression analysis of incorpo-
ration data can establish pool parameters in terms of actual mass of thymidine
in the absence of information on the effective specific activity of [3H]dThd in
(a) the extracellular environment and (b) the intracellular pool. In order to
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investigate this question a modified isotope dilution technique (7) can be applied
to the MCF-7 cell system. The basis of such an analysis is the ability of preexisting
thymidine pools to compete with added labeled thymidine with respect to incor-
poration into a given end-product. Generally, three to four concentrations of
thymidine are utilized in any given experiment. Cells are harvested after exoge-
nous thymidine has equilibrated with intracellular precursor pools for DNA
and the radioactivity in the acid-soluble pool and DNA is determined. Applica-
tion of the equation presented in the legend of Table 1 to the acid-soluble
pool provides an index of the extracellular competitive pool for thymidine incor-
poration. Applying this analysis to incorporation into DNA provides estimates
of actual intracellular pool size. Table 1 demonstrates results obtained in control
MCEF-7 cells. These results suggest that substantial amounts of thymidine are
available both extra- and intracellularly and that there is considerable variation
in pool size over time in serum-free medium. The fact that addition of labeled
thymidine in the range of 1 to 2 pCi (2-5 X 1078 moles/liter) constitutes only
5 to 10% of total thymidine incorporated into intracellular pools and DNA
suggests that [*H]dThd incorporation is likely to provide highly inaccurate esti-
mates of actual rates of DNA synthesis in the absence of information on the
condition of said pools. It should be pointed out that IMEM contains no thymi-
dine and that the charcoal-treated calf serum has negligible residual nucleoside.

Hormonal influences on thymidine pool kinetics were studied at 24, 36, and
48 hr after estrogen or tamoxifen treatment. These studies represent separate

TABLE 1. Effective intracellular and extracellular pools of dThd

Time Extracellular pool Intracellular pool Protein
(hr) (moles/liter) (moles/liter) (mg)
0 238 x 1076 6.30 X 1078 0.783

12 2.30 X 10°% 1.67 X 1077 0.804

24 3.59 X 106 6.38 X 1077 0.998

36 8.36 X 1077 7.12x 1077 1.299

48 7.18 X 1077 5.67 X 1077 1.089

MCEF-7 cells were replicately plated as previously described. Eight hours before
time 0 cells were transferred to 10~5 moles/liter phosphate medium. Medium
was again replaced 1 hr before time 0. [*H]dThd (10 pCi/ml, 1 hr) was added
with varying amounts of unlabeled dThd to achieve estimated extracellular molari-
ties of 2 X 107, 5 X 1077, or 10-¢ moles/liter 1 hr before harvest. Cells were
harvested at the times indicated (column 1) and aliquots were taken for determina-
tion of acid-soluble radioactivity (column 2), acid-precipitable radioactivity (column
3), and protein (column 4). Values for incorporation were normalized per unit
protein. The effective pool size was determined according to Scudiero et al. (7)
as follows:

T, = lower concentration of dThd
T, = Higher concentration of dThd
Q =ratio of label incorporated at concentration T, and T, (cpm 1/cpm 2)

Then P (effective pool size) + (T, — (T, X Q))/(Q — 1)
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experiments in which the incorporation of [*H]dThd into the acid-soluble pool
and DNA of MCF-7 cells were determined as a function of time of exposure
to trace (1-60 min) and in which cells were additionally exposed to varying
concentrations of dThd (2 X 1078, 5X 1078, 1078, and 2 X 107% moles/liter)
for a constant period of time (60 min). Coupling of experimental results employ-
ing MLAB, linear regression, and isotope dilution (described above) allows a
rigorous analysis of thymidine pools and permits determination of whether extra-
cellular salvage or intracellular dThd is primarily utilized in DNA synthesis.
The parameters that can be estimated by this methodology are presented in
Table 2. The contributions of extracellular salvage-derived thymidine to net
DNA synthesis (b(s)/b) and to intracellular pools (a(s)/a) are of particular
interest. These methods do not allow a breakdown of intracellular dThd into
(thymidine derived from internal breakdown of DNA) or from the reduction
and methylation of uridine derived from turnover of RNA. The term “salvage”

TABLE 2. Significance and derivation of parameters utilized in analysis of thymidine pools in

MCF-7 cells
Parameter Significance Method of determination
i M Intracellular pool size (pmoles) MLAB kinetic analysis [dpm/
(spec. act. X ECDF x IDCF)]
2. L [®*H]dThd component of intracellu- MLAB kinetic analysis [dpm/spec.
lar pool (pmoles) act.]
3. a Rate of entrance of dThd into in- MLAB kinetic analysis [dpm/
tracellular pool (pmoles/min) (spec. act. X ECDF x ICDF)]
4. a(s) Rate of entrance of extracellular Slope of line for incorporation of
dThd into intracellular pool [®H]dThd into acid-soluble pool
(pmoles/min) [dpm/(spec. act. X ECDF)]
5. a(s)/a Percent of dThd entering the intra- Ratio of parameters 3 and 4
cellular pool from extracellular
sources
6. ECDF Factor by which [*H]dThd is di- Method of Scudiero et al. (7) (iso-
luted by extracellular dThd in me- tope dilution)
dium
7. b Rate of exit of dThd from extracel- MLAB kinetic analysis [dpm/
lular pool (pmoles/min) (spec. act. X ECDF X ICDF)]
8. b(d) Rate of incorporation of dThd into Slope of line for incorporation of
DNA (pmoles/min) 3H dThd into DNA [(spec. act. X
ECDF x IDCF)]
9. b(m) Rate of loss of dThd from intracel- b — b(d) (parameters 7 and 8)
lular pool due to metabolism
(pmoles/min)
10. b(s) Rate of incorporation of extracel- Slope of line for incorporation of
lular dThd into DNA (pmoles/min) [3H]dThd into DNA [dpm/(spec.
act. X ECDF)]
11. b(s)/b(d) Percent of dThd in DNA derived Ratio of parameters 10 and 8
from extracellular sources
12. ICDF Factor by which [*H]dThd is di- Method of Scudiero et al. (7) (iso-

luted by intracellular sources of
dThd

tope dilution)




