S . s
| A First Course 1n -
Computer Programming

[Ssertion 2: r—> U and gcala, o) — gca (olaa, olao))
tion 3: ged (1, @) = g D) *)b := a; (* assg
red (r, b) = ged (g ; (* assertion 5:
(* assertion 6: §
0 and ged(a,
) = ged (olda
(olda, oldb) 7
bldb) *)r :=b
g/db) *) (* asse|
assertion 3:
ion4:ged (r, b
yed (a, b) = ged (¢
= ged

’ Using ,
ASCAL

ARTHUR M KEEELER

COMPUTER SCIENCE SERIES 8

w*wﬂfw‘:‘: UETRELT

e :‘wﬂ. .{; L

% A FIRST COURSE
¢ IN COMPUTER PROGRAMMING
5 USING PASCAL

Arthur M. Keller
Stanford University

ST g i et O ANl A .. i e s ity B b5

McGraw-Hill Book Company
New York St. Louis San Francisco Auckland Bogota Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris Sao Paulo Singapore Sydney Tokyo Toronto

This book was typeset using the TEX document production system, and camera-ready copy
was produced on a CRS Alphatype phototypesetter. Computer resources were provided by the
Stanford Artificial Intelligence Laboratory and the Stanford Computer Science Department.
The editors were James E. Vastyan and Joseph F. Murphy; the production supervisor was
Diane Renda. The cover was designed by Steven Hoffman.

Edwards Brothers Incorporated was printer and binder.

A FIRST COURSE IN COMPUTER PROGRAMMING USING PASCAL

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

6789 SMSM 8987654

ISBN 0-07-033508-7

Library of Congress Cataloging in Publication Data

Keller, Arthur M.
A first course in computer programming using
PASCAL.

(McGraw-Hill computer science series)

Bibliography: p.

Includes index.

1. PASCAL (Computer program language)
I. Title. II. Series.
QA76.73.P2K44 001.64'24 81-23601
ISBN 0-07-033508-7 AACR2
ISBN 0-07-033509-5 (Instructor’s manual)

To my father,
who taught me the importance of learning,

and to my mother,
who taught me the importance of not doing it all of the time.

Preface

This is a complete textbook for a first semester or two quarter course in
computer programming using the PASCAL language. This book could be used
at the undergraduate level or at the advanced high school level. It is compatible
with the curriculum for the course CS 1 as described in Curriculum 78.* The
coverage extends beyond this curriculum to cover the entire PASCAL language.

There are several unique features of this book. Procedures are taught very
early. This fits well with the technique of stepwise-refinement method of top-
down decomposition style of programming. Many examples show several stages,
some of which are correct and others incorrect. Examples of good programs are
marked by the “thumbs-up” symbol that appears in the margin of this page.
Examples of incorrect programs are marked by a “thumbs-down” symbol in the
margin. In this way, the reader learns why programs are incorrect and how to
debug programs. Each new topic is introduced by an example that illustrates
the feature and explains the need for this new feature. In this way, the student
learns to think from the point of view of solving the problem and determining
what features are needed to solve a problem. After introducing a problem that
motivates learning a feature, the feature is explained, and then the problem is
solved in depth.

This book assumes no knowledge of higher mathematics on the part of
the reader. The reader should, however, know elementary high school algebra.
Although many explanations were devised for readers without mathematical
backgrounds, those with mathematical sophistication should not be bored or
insulted either.

There are different approaches to teaching an introductory programming
course. The most common variations affect the order of covering topics. Some
of the topies in this book may be covered in a different order if desired. The most
important of these is the coverage of procedures and of procedure parameters.

Procedures are a very simple but important control structure. The concept
of top-down programming requires the procedure abstraction. Consequently,

* “Curriculum ’78: Recommendations for the Undergraduate Program in Computer Science”

in Comm. ACM, 22, 3 (March 1979), 147-166.

xi

xii PREFACE

the first control structure covered in the text is procedure declaration and in-
vocation. When students learn to program without being taught to decompose
their programs into procedures, they often write long unstructured programs
without using any procedures, even long after procedures have been covered.
The main drawback with the approach of teaching procedures early is the use
of references to nonlocal variables. Even when parameters are taught, students
may still prefer to use nonlocal references. Introduction of procedures can be
delayed until students have learned several other control structures. While this
may facilitate utilization of this book with existing curricula, it only partially
alleviates the objection raised. Alternatively, procedure (value) parameters may
be taught earlier. Section 9.1 may be taught as early as Chapter 3. Value
parameters should be taught at least a week before VAR parameters so that the
students understand them before being introduced to the additional nuances of
VAR parameters. Early coverage of value paramcters allows such time, and it
also solves the problem of nonlocal references. Value and VAR parameters were
placed in the same chapter primarily to assist in comparing them.

Coverage of recursion may be delayed or omitted. Its placement was dictated
by being a prerequisite of the merge sort. Coverage of merge sort may also be
delayed or omitted. However, the merge bubble sort should be covered when the
other sorting algorithimns are covered, primarily because it is faster than n2 and
does not require recursion.

Chapters 16 to 21 may be covered in any order. These chapters complete
the coverage of PASCAL, and their coverage may be delayed until the second
course in computer programming.

An Instructor’s Manual is available that includes brief discussions of ap-
proaches to using the text, extensive programming problems and solutions, and
explanations of what is needed to solve the problems and how to go about solving
them.

Acknowledgments

I have received assistance from many people while preparing this book,
and for this I am extremely thankful. Rich Pattis provided many ideas and
suggestions; his book* and notes were often a source of inspiration. I received
much help from Dave Wall during numerous discussions. Jeff Vitter helped shape
the presentation when we taught together at Stanford; he assisted further using
the book in preprint form at Brown University. Brent Hailpern provided many
useful suggestions for improving this book. Denny Brown gave extensive advice
about pedagogy. I would also like to thank my teaching assistants who filled in
the cracks in my explanations. I also thank my proofreaders for catching many
of the bugs before they could confuse students. I will gladly pay a $1.00 reward
to the first finder of every remaining error.

I would like to thank Stanford University, and especially the Computer
Science Department, for providing an excellent learning environment and in-
quisitive students. The staff of the LOTS computer facility was very helpful in
providing an environment where students can learn about computers and in cor-
recting my technical misconceptions. The SAIL and SCORE computer facilities
of the Computer Science Department were used to typeset this book and to test

* Karel the Robot: A Gentle Introduction to the Art of Programming, Wiley, New York,

1981.

PREFACE xiii

all the programs used in the book. Much TEX wizardry was provided by Jim
Boyce. The document compiler used, TEX, was designed by Donald E. Knuth.
This book is typeset using the Computer Modern series of fonts (also designed
by Knuth). Some of the graphic characters were designed by Scott Kim.

I would also like to thank the following people and organizations for their
assistance in the preparation of this book: American Film Institute, Jim Arnold,
Jim Celoni, 8. J., Tom Dietterich, Les Earnest, Ed Feigenbaum, Robert W. Floyd,
Martin Frost, David Fuchs, Richard P. Gabriel, Howard Givner, Ron Goldman,
Gene Golub, Ralph Gorin, Lynn Gotelli, Susan Hill, Fran Larson, Frank Liang,
Richard Manuck, John McCarthy, Jim McGrath, Mike Peeler, Jayne Pickering,
Michael Plass, Stuart Reges, Betty Scott, Laurie Sinelair, Richard Southall, The
Stanford University Libraries, Jorge Stolfi, Carolyn Tajnai, Chris Tucci, Jeffrey
Ullman, Marilynn Walker, Gio Wiederhold, Don Woods, and Dawn Yolton. I also
thank the McGraw-Hill Book Company for their extensive assistance. Finally, I
would like to thank my students who made it all worthwhile.

Arthur M. Keller

Contents

Preface xi

1 Introduction to Computing 1
1-1 Algorithms 2
1-2 Steps in the Life of a Program 4
1-3 Computer Organization 5
1-4 Good Programming 6

2 Introduction to PASCAL 9
2-1 Output 10
2-2 Comments 12
2-3 Procedures 12
2-4 Identifiers 14
2-5 Repetition: The FOR Statement 14
2-6 Expressions 19
2-7 Iteration 22
2-8 Nesting Loops 25
2-9 Nested Iteration 27
2-10 DOWNTO Clause 29
3 Variables and Assignment 31
3-1 Factorials 31
3-2 Variables 32
3-3 Assignment, Statement 32
3-4 Factorials Continued 34
3-5 Fibonacci Numbers 36
3-6 Constants 38
3-7 Floyd’s Triangle 39

vii

vill CONTENTS

4 Input and Conditional Execution
4-1 Reading Input

4-2 Variable-Length Input

4-3 IF Statements

4-3-1 Conditions

4-3-2 ELSE

4-4 Chess

4-5 AND

4-6 Chess: Bishop Moves
4-7 OR

5 Types

5-1 Type Boolean

5-2 Type Compatibility
5-3 Type Real

5-4 Type Conversion

6 Program Correctness
6-1 Program Debugging
6-2 Syntax Errors

6-3 How Two Syntax Errors Become Ten
6-4 Semantic Errors
6-5 Invariant Assertions

68-6 Debugging Techniques

6-7 Debugging Procedures

6-8 Rewriting Programs

6-9 Invariant Assertions and IF Statements

7 Indefinite Loops

7-1 WHILE Statement

7-2 Reasoning about Programs

7-3 Variable-Length Input: Signal-Value Method
7-4 REPEAT Statement

8 More Input and Output

8-1 Formatted Output

8-2 Read and Readln

8-3 Character Variables and Input-Output
8-3-1 Reading and Writing Characters

8-4 Eof and Eoln

8-5 Summary of Input

8-6 Variable-Length Input Using Eof Method

41
41
43
44
45
48
51
53
54
56

59
59
61
64
67

69
69
70
71
73
74
75
76
77
77

81
81
85
88
90

93
93
95
97
97
100
102
102

9 Procedures, Parameters, and Scope
9-1 Procedures

9-1-1 Procedure Parameters

9-2 Functions

9-2-1 Built-in Functions

9-2-2 Programmer-Defined Functions

9-3 Summary: Procedures versus Functions

9-4 Example: Prime Numbers

9-5 Reference or VAR Parameters

9-6 Summary: Value versus Reference Parameters

9-7 Scope: Local and Global Variables

10 Another View of Types

10-1 Subrange Types

10-2 Enumerated Types

10-3 The Pred, Succ, Ord, and Chr Functions
10-4 The CASE Statement

11 Arrays

11-1 Using Arrays

11-2 Declaring Arrays
11-3 Arrays: An example
11-4 Standard Deviation
11-5 Code Conversion

12 Records
12-1 Records: An Example—Bubble Sort

13 Strings

13-1 Fixed-Length Character Strings
13-2 Variable-Length Strings

13-3 Filling Text

13-4 String-Handling Procedures

14 Recursion
14-1 Generating Permutations

15 Analysis of Several Sorting Algorithms
15-1 Selection Sort

15-2 Insertion Sort

15-3 Binary Search

15-4 Bubble Sort

15-5 Merge Bubble Sort

15-6 Merge Sort

16 Sets

16-1 Review of Sets
16-2 Sets in PASCAL
16-3 Sets: An Example
16-4 Parsing

CONTENTS ix

105
105
106
109
109
109
113
113
117
120
122

127
127
129
131
135

139
139
142
144
145
147

149
150

157
157
181
165
167

17
178

183
184
186
187
188
189
192

195
195
200
202
204

X CONTENTS

17 Files

17-1 Example: Junk Mail
17-2 Specifying Different Files
17-3 Junk Mail, Continued

18 Dynamic Data Structures
18-1 Reversing a List

18-2 Pointers

18-3 Linked Lists

18-4 Reversing a List, Continued
18-5 Traversing a List

18-6 Queues

19 Procedures and Functions as Parameters
19-1 Plotting Graphs
19-2 Plotting Graphs, Continued
19-3 Encrypting Text
20 GOTO Statement
21 PACKED Data Structures
21-1 Advantages of Using PACKED Structures
21-2 Disadvantages of Using PACKED Structures
21-3 Pack and Unpack
A Answers to Selected Exercises
Built-In Functions
Character Sets

PAscaL Syntax

B

C

D

E Interactive Input-Output
F Interactive Debugging

G Glossary

H References

Index

211
211
212
213

225
226
226
231
234
236
239

245
245
249
253

259

263
263
264
264

267

277

279

281

286

289

293

301

302

Chapter 1

Introduction
to Computing

In this book, we will learn how to get computers to do work for us. Even those
students who will never program after reading this book will still learn what
computers ean do and how they work. Our problem-solving skills will be exer-
cised and strengthened. In particular, the technique of problem decomposition
will be learned.

A computer is an automatic tool. It is intended to do work for people, not
to control them. It can add a column of numbers rapidly. It can make certain
kinds of decisions, much like a thermostat which “knows” when to turn heat on
and off.

A computer must be told how to do something. It naively follows instruc-
tions. We have to tell it step-by-step everything it is to do. These instructions
comprise a computer program, which is similar to recipe in a cookbook.

Consider the following recipe for duck 4 P’orange:*

This famous recipe depends for its flavor on the Seville or bitter orange,
135, which gives the dish its name.

Prepare:

An unstuffed Roast Duckling, above
When it is done, remove it from the roasting pan and keep warm.
Prepare:

Sweet-Sour Orange Sauce, 355

using Seville or bitter oranges and omitting the lemon. Degrease pan
juices and deglaze the pan as described on 340.

* Irma S. Rombauer and Marion Rombauer Becker, Joy of Cooking, Bobbs-Merrill, New

York, 1975, p. 433. Reprinted with permission of the publisher.

2 INTRODUCTION TO COMPUTING

The first sentence tells something about the recipe. 1t says we can find informa-
tion about the Seville orange on page 135. The first step—prepare an unstuffed
roast duckling - relies on a more basic recipe shown earlier on the page. The next
step is simple. After it, we reach a step described in more detail elsewhere--the
preparation of the sweet-sour orange sauce. However, we prepare it differently
than usual by using the Seville orange and omitting the lemon. The last step is
explained on page 340.

In describing the solution to a problem, we use a layered approach. We first
use a general outline of the basic steps. The outline is then elaborated with more
detailed steps. Gradually, we flesh out the outline until everything is described
in sufficient detail. This is also the time-honored method of writing an essay:
after creating the detailed outline, we convert it into a complete paper.

Computers need to be told what to do- -and how to do it-- unambiguously.
Unfortunately, English and other ordinary languages are too vague. Consider
the sentence, “The lady made the robot fast.” This brief sentence can have many
meanings:

The lady built the robot quickly.

The lady designed the robot so that it would operate quickly.

The lady took a slow robot and speeded it up.

The lady tied down the robot.

The lady forced the robot to stop eating.

The lady attended a gathering of robots that were not eating. (Compare
with “The lady made [it to] the robot feast.”)

S v w oo

Rather than using English, special languages - programming languages or com-
puter languages —have been developed. These languages are very precise. and
enable the computer to interpret a program unambiguously. Just like the step
in writing an essay of converting the outline form into English, there is a step in
writing a program of converting the outline form into a programming language.

Once a program is written, it is not yet finished. An essay, once written,
must be polished. The acid test for a computer program is to feed it to the
computer. The computer takes the program and follows the instructions in
it. This is called running or executing the program. The computer may have
difficulty following the instructions. For example, the program may have an error
in grammar. Since the computer will usually read what you tell it to do before
attempting to do anything, grammatical errors are the first to be found. Once
you have fixed all the grammatical errors, the computer will attempt to run your
program. Your program may ask the computer to do something it cannot do.
For example, you may have asked it to divide a number by zero. Such errors
are usually harder to find and correct. We will learn techniques for figuring out
what is wrong with one of our programs and how to correct it.

1-1 ALGORITHMS

An algorithm is a type of description of the solution of a problem. The recipe
given earlier was an algorithm for making duck 4 V'orange. Other algorithms
include knitting instructions, instructions for constructing a kit, and computer
programs.

An algorithm is a vehicle for explaining how a problem can be solved. It
necessarily uses a step-by-step approach. It can be formulated in a variety of

[1-1] ALGORITHMS 3

ways, provided that it is unambiguous. Each field of study has developed its
own specialized vocabulary for describing how things are done. Unambiguous
languages, such as PASCAL, have been designed for use in describing algorithms
to computers.

An algorithm must be precise. It must tell the order of steps. When putting
together a kit, it is important to know whether to fit tab a into slot b before or
after fitting tab ¢ into slot d. A list of ingredients is not enough; we also have
to know when to add them. An algorithm must also clearly tell when to stop
doing something and to go on to something else. A recipe that just says to bake
a cake until it is done is not as useful as one that also gives criteria for when the
cake is done. Consider the following algorithm for making toast:*

There’s an art of knowing when.
Never try to guess.

Toast until it smokes and then
twenty seconds less.

We do not know when to stop cooking the toast until it is too late! An algorithm
has to describe how to choose between alternatives. When buying apples from
a store, you cannot choose the tastiest apples because it is hard to know which
apples are going to be the tastiest without actually tasting them. However, you
could tell how tasty a bunch of grapes was by eating one (but the store might
still not like it if you ate a grape before buying the bunch).

An algorithm must be definite. If you follow an algorithm twice, the same
result must follow each time. Two people following the same recipe for pie should
bake equally tasty pies. If this is not true, they must have used different brands
of ingredients, varied the recipe slightly, or changed something else. Technically,
we want an algorithm to be deterministic.

An algorithm must be finite. If you follow an algorithm, it must end even-
tually. Suppose someone else is thinking of an integer—it could be positive,
zero, or negative-—and we want to guess it. Consider this algorithm. Try 0.
Then, try 1. Then, try 2. Continue with some more positive numbers. Then,
try —1. Then, —2. Continue with some more negative numbers. This process
is supposed to stop when we have guessed the number. If the other person is
thinking of a negative number, we would never guess it because we would never
run out of positive numbers to guess, and we guess all positive numbers before
guessing any negative numbers. A better algorithm follows. Try zero. Then, try
1 and —1. Then, try 2 and —2. Continue trying positive and negative numbers
until guessing the right number. The number of steps we take is about twice the
magnitude (absolute value) of the right number. For example, we guess 10 in
step 20 and —10 in step 21. Thus, we see that the later algorithm is finite while
the former need not be.

The definition of an algorithm should describe three parts: input, process,
and output. An algorithm usually involves some input, that is, things that exist
that are used by the algorithm. The input for a recipe includes the ingredients
and the utensils used. An algorithm also produces results called output. The
output for a recipe is usually some tasty food. As we have already considered,
an algorithm describes how the input is to be transformed into the output.

*

Piet Hein, “Timing Toast” in Grooks 2, Doubleday, Garden City, N.Y., 1969, p. 23.
Reprinted with permission of the author.

4 INTRODUCTION TO COMPUTING

1-2 STEPS IN THE LIFE OF A PROGRAM

Only a small part of the time spent in the development of a program is actually
in writing it. There are several other important steps.

The first step in writing a program is problem definition. If you do not know
where you are going, you cannot know it when you get there. Often the problem
we are asked to solve is ill-defined. The input or output may not be clearly
stated. Consider the assignment of mailing the best customers an offer to try a
new product. There are several important questions that arise. Where is the list
of customers? How do we know which customers are the best customers? What
should the offer look like and what should it say? These questions have to be
answered before we can proceed to writing the program.

Once the problem is defined, we can outline the solution. We consider general
alternative approaches to solving the problem. Our first solution may not be the
best way of solving the problem. At this stage, we have not invested very much
in any particular way of solving a problem. If we devise a better solution now,
we will have saved more time than if we have to adopt it later. Consider the
problem of finding a telephone number. Suppose we decide to look it up in the
telephone book. We could search it sequentially, but on the average we would
look through half of the names. Such an algorithm would be easy to describe but
very slow. We could take advantage of the index entries at the top of the page
by thumbing through the telephone book until we find the right page. Then, we
can search the page sequentially. This algorithm is harder to describe, but will
take much less time to follow. Of course, this case is clear cut, but with other
problems the choice may not be as obvious.

The chosen outline is then developed into an algorithm. We will use a top-
down approach to developing an algorithm. This means that we start with the
outline and define each step in greater detail. This fleshing out continues until
we are sure exactly how to solve the problem. To some extent, this involves using
existing algorithms. For example, when a step of the outline is to do something
we have done before or is in a book, we can do it the same way. As we develop
more complicated programs, we will build up a repertoire of techniques that we
can put together in new ways to solve new problems.

After the algorithm has been chosen, we proceed to writing it in a pro-
gramming language. This step translates the abstract algorithm into PASCAL.
Writing the actual statements in a programming language is called coding, since
a sequence of such statements is called code. It is important not to do any coding
until the algorithm is fairly well defined, lest we become committed to the code
and not be willing to change our minds. Programming should not be confused
with coding: coding is just one of the steps in programming.

When parts of the program are coded, they can be tested. This involves
having the computer try to understand the program and then follow it. It is best
to test the components of a program separately before putting it all together,
especially for a large program. Otherwise, it will be hard to track down the
source of the errors. Errors in a program are called bugs and detecting and
correcting them is called debugging. The process of debugging involves testing
the various cases the program is expected to handle. If we find any errors, such
as incorrect output, we look for the cause of each error. For each error, we try to
devise a change to the program that removes the problem. Such changes often
remove other errors but occasionally introduce new ones, so it is necessary to
retest the program to ensure that it still works for the old cases and handles the
new ones properly. We continue testing the program and correcting errors until

[1-3] COMPUTER ORGANIZATION 5

we have tested all cases and find no remaining errors. Testing only shows the
presence of bugs, not their absence. There may be other bugs, but we have not
found them, probably because we have not tested every possible case.

We have so far only considered the program, but not the explanation of
the program for others. As we will find, a program can be quite complicated
and confusing. Hence, it is important for the program to include explanations
of what it is intended to do and how it works. These explanations are called
documentation. In order to make programs more readable to others, several
techniques are often employed. A program is formatted to reflect its structure—
similar to the indentations in an outline that reflect its levels. Small discussions
are sprinkled throughout the code to explain how the program works. These are
elements of internal documentation, which are explained fully later in the text.
A formal document- -describing the input, output, function of the program, and
how the program works-—is written to enable the effective use of the program.
Such documentation also makes modifying the program easier. Although there
is some tendency to delay writing documentation until the program is fully
debugged, it is best to write it during development of the program. The original
specifications can become the basis for the external documentation. As the design
proceeds, decisions can be incorporated into the documentation when they are
made. Very little documentation should be left for the coding step or after
debugging. Once the program is working, we have probably forgotten most of
the design decisions. All that should be left is to polish the documentation, not
to write it.

Classwork problems end there, but real programs continue to live on. A
real program is written because there is some real problem to solve. Once the
program is available, people may think of other useful things it could do, or cases
it does not handle properly that were not clearly specified. This ushers in the
program maintenance phase. Changes will have to be made to the program to
satisfy the changed requirements for the program. Sometimes these changes will
be made by the original programmer; other times they are given to someone else
to do. If we are given a program to modify, we must first learn how the program
works, and then figure out how it should be changed. For many programs,
this process is more expensive than the original program development! Program
maintenance can be facilitated by good programming habits, such as writing
lucid code and providing good internal and external documentation.

1-3 COMPUTER ORGANIZATION

Learning about the organization of a computer will help us understand how a
computer works and how to use it. The topology of a computer is like that
of a star. The center of a computer does the work and makes the decisions,
analogous to the function of the brain. Surrounding the brain are devices for
communicating with the outside world. These include input devices, like sense
organs, and output devices, like vocal cords. Some devices participate in both
input and output, such as a computer terminal. The hands and mouth are also
input and output devices.

The central part of the system is called a the central processing unit (CPU).
This part follows the instructions of a program and directs the input and output
devices. Some memory is included which contains, among other things, the parts
of a program being executed and the information being manipulated by that
program. This memory is often called core memory, originally because it was

6 INTRODUCTION TO COMPUTING

composed of tiny copper cores, but today the name continues to be used because
it signifies the central or primary memory of the computer.

There are many varieties of input and output devices. A common output
device is a printer. Printer speeds range from 300 lines per minute or less to more
than 2000 lines per minute. Most printers print only fixed-width characters like
a typewriter, and some cannot print lower case letters. Some newer printers
can produce print graphics and diagrams; for example, this book was typeset
on a graphics computer printer. Some computers have devices for reading and
punching computer cards. The rectangular or circular holes in the cards is what
the computer is interested in. The computer does not read any of the writing
on the cards. The familiar warning against “folding, spindling, or mutilating”
computer cards was written so that the cards can be fed into a card reader (at
speeds upwards of 1000 cards per minute) and then read accurately. Customers
are often instructed to write something on the card, but it is keypunched on
the card before the computer is able to read it. An increasingly common device
capable of both input and output is a computer terminal, also known as a CRT
because the screen is often a cathode-ray tube. Unusual output devices include
voice synthesizers and robot arms. Computers will soon be able to audibly warn
a driver that a car is low on gas, or claim that it has just won a chess game.
Unusual input devices include cameras and laboratory instrument sensors.

The average computer does not understand PASCAL directly. This is similar
to the problem faced by the native speaker of English who also speaks French,
but not fluently. That person thinks in English and translates everything heard
or read from French to English and everything about to be said or written from
English to French. A computer’s native language is called machine language
and consists of a binary code (numbers in base 2) containing only Os and Is.
The first computers were programmed exclusively in machine language. A
symbolic language that could be easily translated into machine language was
soon developed; it was called assembly language because the machine instructions
were assembled directly from assembly instructions using—you guessed it!'—an
assembler. Then, high-level languages were invented—the first was FORTRAN
in the early to middle 1950s —and compilers were constructed to translate the
programs to machine language. These languages are called high-level languages
because the translation of programs written in them into machine language
is complicated, and each statement in a high-level language may compile into
several machine language instructions.

A compiler is a program that takes another program as input and produces
machine language and messages as output. The input program is called the
source program while the output machine language is called the object program.
After the compiler is run, the resulting object program is run. This program
does whatever is requested in the original high-level language program. It also
has its own input and output.

1-4 GOOD PROGRAMMING

Good programming is an art, and opinions vary about the best way to write a
program. However, three important criteria for determining whether a program
is good are correctness, clarity, and efficiency.

A correct program does what it is supposed to. It conforms to its specifica-
tions, in that its output is correct for any acceptable input. The problem is that
the program has to work for any acceptable input. It is not possible to test every

