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Adapter’s Foreword

Purpose

The original of this book is an excellent work of Mark Allen Weiss. All the
fundamental topics are covered. The ADT concepts and the analysis of the
algorithms (especially the average case analysis) are emphasized. The extensive
examples are also quite helpful to the students.

Till now the original book has been introduced to Chinese students for two
years and has received positive feedbacks from many instructors and students. This
re-composition is made to trim the contents of the book so that it better fits a
second-year undergraduate course in data structures and algorithm analysis for the
Chinese students.

What’s New

The recomposition includes two major structure changes. Fitst, the review section
of mathematics has been canceled since sophomore students in China have taken
sufficient courses in mathematics in their first-year study, including calculus, linear
algebra, and discrete mathematics. Secondly, the original Chapter 5 is moved to
follow Chapter 7, in order to show hashing as a method to break the lower bound
of searching by comparisons only.

Other minor changes include adding some interesting data structures and
methods, and rearranging part of the contents. Introduction of the sparse matrix
representation is added as an example of application of multilists in Section 3.2.
At the mean time, bucket sort and radix sort are discussed in mote details in
Chapter 6 (which was Chapter 7 in the original book) instead of being given as an
example in Section 3.2. In Chapter 4, the two sections about tree traversals, namely
Sections 4.1.2 and 4.6, are merged into one and are inserted into Section 4.2.3.
Threaded binary tree is then formally introduced instead of being mentioned in
exercises only. At the beginning of Chapter 7 (which was Chapter 5 in the original
book), Hashing, a method called interpolation search is briefly discussed to make
the point that it is possible to break the lower bound if we search by methods other
than comparisons. Finally in Section 6.8, Sorting Large Structures, we introduce
table sort as a method to handle the case in which physically sorting large structures
is requited.
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PREFACE

Purpose/Goals

This book describes data structures, methods of organizing large amounts of data,
and algorithm analysis, the estimation of the running time of algorithms. As com-
puters become faster and faster, the need for programs that can handle large amounts
of input becomes more acute. Paradoxically, this requires more careful attention to
efficiency, since inefficiencies in programs become most obvious when input sizes are
large. By analyzing an algorithm before it is actually coded, students can decide if a
particular solution will be feasible. For example, in this text students look at specific
problems and see how careful implementations can reduce the time constraint for
large amounts of data from 16 years to less than a second. Therefore, no algorithm
or data structure is presented without an explanation of its running time. In some
cases, minute details that affect the running time of the implementation are explored.

Once a solution method is determined, a program must still be written. As
computers have become more powerful, the problems they must solve have become
larger and more complex, requiring development of more intricate programs. The
goal of this text is to teach students good programming and algorithm analysis skills
simultaneously so that they can develop such programs with the maximum amount
of efficiency.

This book is suitable for either an advanced data structures (CS7) course or
a first-year graduate course in algorithm analysis. Students should have some know-
ledge of intermediate programming, including such topics as pointers and recursion,
and some background in discrete math.

Approach

I believe it is important for students to learn how to program for themselves, not
how to copy programs from a book. On the other hand, it is virtually impossible to
discuss realistic programming issues without including sample code. For this reason,
the book usually provides about one-half to three-quarters of an implementation,
and the student is encouraged to supply the rest. Chapter 12, which is new to this
edition, discusses additional data structures with an emphasis on implementation
details.

vii
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PREFACE

The algorithms in this book are presented in ANSI C, which, despite some
flaws, is arguably the most popular systems programming language. The use of C
instead of Pascal allows the use of dynamically allocated arrays (see, for instance,
rehashing in Chapter 7). It also produces simplified code in several places, usually
because the and (& &) operation is short-circuited.

Most criticisms of C center on the fact that it is easy to write code that is barely
readable. Some of the more standard tricks, such as the simultaneous assignment
and testing against O via

if (x=y)

are generally not used in the text, since the loss of clarity is compensated by only a
few keystrokes and no increased speed. I believe that this book demonstrates that
unreadable code can be avoided by exercising reasonable care.

Overview

Chapter 1 contains review material on recursion. I believe the only way to be
comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 7.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic anal-
ysis and its major weaknesses. Many examples are provided, including an in-depth
explanation of logarithmic running time. Simple recursive programs are analyzed
by intuitively converting them into iterative programs. More complicated divide-
and-conquer programs are introduced, but some of the analysis (solving recurrence
relations) is implicitly delayed until Chapter 6, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding
these data structures using ADTs, fast implementation of these data structures, and
an exposition of some of their uses. There are almost no programs (just routines),
but the exercises contain plenty of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external
search trees (B-trees). The UNIX file system and expression trees are used as examples.
avL trees and splay trees are introduced but not analyzed. Seventy-five percent of the
code is written, leaving similar cases to be completed by the student. More careful
treatment of search tree implementation details is found in Chapter 12. Additional
coverage of trees, such as file compression and game trees, is deferred until Chapter
10. Data structures for an external medium are considered as the final topic in
several chapters.

Chapter 5 is about priority queues. Binary heaps are covered, and there is
additional material on some of the theoretically interesting implementations of
priority queues. The Fibonacci heap is discussed in Chapter 11, and the pairing heap
is discussed in Chapter 12.
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Chapter 6 covers sorting. It is very specific with respect to coding details and
analysis. All the important general-purpose sorting algorithms are covered and
compared. Four algorithms are analyzed in detail: insertion sort, Shellsort, heapsort,
and quicksort. The analysis of the average-case running time of heapsort is new to
this edition. External sorting is covered at the end of the chapter. o

Chapter 7 is a relatively short chapter concerning hash tables. Some analysis is
performed, and extendible hashing is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time.
This is a short and specific chapter that can be skipped if Kruskal’s algorithm is not
discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not
only because they frequently occur in practice but also because their running time is
so heavily dependent on the proper use of data structures. Virtually all of the standard
algorithms are presented along with appropriate data structures, pseudocode, and
analysis of running time. To place these problems in a proper context, a short
discussion on complexity theory (including NP-completeness and undecidability) is
provided.

Chapter 10 covers algorithm design by examining common problem-solving
techniques. This chapter is heavily fortified with examples. Pseudocode is used in
these later chapters so that the student’s appreciation of an example algorithm is not
obscured by implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters
4 and 5 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 is new to this edition. It covers search tree algorithms, the k-d tree,
and the pairing heap. This chapter departs from the rest of the text by providing
complete and careful implementations for the search trees and pairing heap. The
material is structured so that the instructor can integrate sections into discussions
from other chapters. For example, the top-down red black tree in Chapter 12 can
be discussed under avi trees (in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures
courses. If time permits, then Chapter 10 can be covered. A graduate course
on algorithm analysis could cover Chapters 6-11. The advanced data structures
analyzed in Chapter 11 can easily be referred to in the earlier chapters. The
discussion of NP-completeness in Chapter 9 is far too brief to be used in such a
course. Garey and Johnson’s book on NP-completeness can be used to augment this
text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material
is presented. The last exercises may address the chapter as a whole rather than a
specific section. Difficult exercises are marked with an asterisk, and more challenging
exercises have two asterisks.

ix
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References

References are placed at the end of each chapter. Generally the references either
are historical, representing the original source of the material, or they represent
extensions and improvements to the results given in the text. Some references
represent solutions to exercises.
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Acknowledgments

Many, many people have helped me in the preparation of books in this series. Some
are listed in other versions of the book; thanks to all.

For this edition, I would like to thank my editors at Addison-Wesley, Carter
Shanklin and Susan Hartman. Teri Hyde did another wonderful job with the
production, and Matthew Harris and his staff at Publication Services did their usual
fine work putting the final pieces together.

M.AW.

Miami, Florida
July, 1996



CONTENTS

Adapter’s Foreword

Preface
1 Introduction 1
1.1. What's the Book About? 1
1.2. A Brief Introduction to Recursion 3
Summary 7
Exercises 7
References 8

2 Algorithm Analysis 9

2.1.
2.2,
2.3.
2.4.

Mathematical Background 9

Model 12
What to Analyze 12
Running Time Calculations 14

2.4.1. A Simple Example 15

2.4.2. General Rules 15

2.4.3.  Solutions for the Maximum Subsequence Sum Problem
2.4.4.  Logarithms in the Running Time 22

2.4,5.  Checking Your Analysis 27

2.4.6. A Grain of Salt 27

Summary 28
Exercises 29
References 33

18

Xi



xii CONTENTS

3 Lists, Stacks, and Queues

3.1.
3.2.

3.3.

3.4.

4 Trees
4.1.

4.2.

4.3.

4.4.

35

Abstract Data Types (ADTs) 35

The List apT 36
3.2.1. Simple Array Implementation of Lists
3.2.2. LinkedLists 37
3.2.3. Programming Details
3.2.4. Common Errors
3.2.5. Doubly Linked Lists
3.2.6. Circularly Linked Lists
3.2.7. Examples 46
3.2.8. Cursor Implementation of Linked Lists
The Stack Apt 56
3.3.1. Stack Model 56
3.3.2. Implementation of Stacks
33.3. Applications 65
The Queue spT 73
3.4.1. Queue Model 73
3.4.2. Array Implementation of Queues
3.4.3. Applications of Queues 78
Summary 79
Exercises 79

37

38
43
45
46

50

57

73

83
Preliminaries
4.1.1. Terminology 83
4.1.2. Tree Traversals with an Application

Binary Trees 85
4.2.1. Implementation
4.2.2. Expression Trees
4.2.3. Tree Traversals

83

84

86

87
90

The Search Tree AnT—Binary Search Trees
4.3.1. MakeEmpty 97
4.3.2. Find 97
4.3.3. FindMin and FindMax
43.4. Insert 100
4.3.5. Delete 101
4.3.6. Average-Case Analysis

AvL Trees 106

4.4.1. Single Rotation
4.42. Double Rotation

99

103

108
111



CONTENTS

4.5. Splay Trees 119
4.5.1. ASimple Idea (That Does Not Work) 120
4.5.2. Splaying 122

4.6. B-Trees 128

Summary 133
Exercises 134
References 141

5  Priority Queues (Heaps) 145

5.1.  Model 145
5.2.  Simple Implementations 146

5.3. Binary Heap 147
5.3.1. Structure Property 147
5.3.2. Heap Order Property 148
5.3.3. Basic Heap Operations 150
5.3.4. Other Heap Operations 154
5.4. Applications of Priority Queues 157
5.4.1. 'The Selection Problem 157
5.4.2. Event Simulation 159

5.5. d-Heaps 160

5.6. Leftist Heaps 161
5.6.1. Leftist Heap Property 161
5.6.2. Leftist Heap Operations 162
5.7.  Skew Heaps 168

5.8. Binomial Queues 170
5.8.1. Binomial Queue Structure 170
5.8.2. Binomial Queue Operations 172
5.8.3. Implementation of Binomial Queues 173
Summary 180
Exercises 180
References 184

6 Sorting 187

6.1. Preliminaries 187

6.2. Insertion Sort 188
" 6.2.1. 'The Algorithm 188
6.2.2. Analysis of Insertion Sort 189



CONTENTS

6.3. A Lower Bound for Simple Sorting Algorithms 189

6.4. Shellsort 190

6.4.1. Worst-Case Analysis of Shellsort 192
6.5. Heapsort 194

6.5.1.  Analysis of Heapsort 196

6.6. Mergesort 198
6.6.1. Analysis of Mergesort 200

6.7. Quicksort 203

6.7.1.  Picking the Pivot 204

6.7.2. Partitioning Strategy 205

6.7.3. Small Arrays 208

6.7.4. Actual Quicksort Routines 208

6.7.5. Analysis of Quicksort 209

6.7.6. A Linear-Expected-Time Algorithm for Selection 213
6.8. Sorting Large Structures 215

6.9. A General Lower Bound for Sorting 216
6.9.1. Decision Trees 217

6.10. Bucket Sort and Radix Sort 219

6.11. External Sorting 222
6.11.1. Why We Need New Algorithms 222
6.11.2. Model for External Sorting 222

6.11.3. The Simple Algorithm 222
6.11.4. Multiway Merge 224
6.11.5. Polyphase Merge 225
6.11.6. Replacement Selection 226

Summary 227
Exercises 229
References 232

7 Hashing 235
7.1.  General Idea 235
7.2.  Hash Function 237
7.3.  Separate Chaining 239

7.4. Open Addressing 244
7.4.1. Linear Probing 244
7.4.2. Quadratic Probing 247
7.4.3. Double Hashing 251



CONTENTS

7.5. Rehashing 252

7.6. Extendible Hashing 255
Summary 258
Exercises 259
References 262

8 The Disjoint Set ADT 265

8.1. Equivalence Relations 265
8.2.  The Dynamic Equivalence Problem 266
8.3. Basic Data Structure 267
8.4.  Smart Union Algorithms 271
8.5.  Path Compression 273
8.6.  Worst Case for Union-by-Rank and Path Compression 275
8.6.1.  Analysis of the Union/Find Algorithm 275
8.7.  An Application 281
Summary 281
Exercises 282
References 283

9  Graph Algorithms 285

9.1. Definitions 285
9.1.1.  Representation of Graphs 286

9.2. Topological Sort 288

9.3.  Shortest-Path Algorithms 292
9.3.1. Unweighted Shortest Paths 293
9.3.2. Dijkstra’s Algorithm 297
9.3.3.  Graphs with Negative Edge Costs 306
9.3.4. Acyclic Graphs 307
9.3.5.  All-Pairs Shortest Path 310

9.4. Network Flow Problems 310
9.4.1. - A Simple Maximum-Flow Algorithm 31

9.5.  Minimum Spanning Tree 315
9.5.1.  Prim’s Algorithm 316
9.5.2.  Kruskal’s Algorithm 318



CONTENTS

9.6. Applications of Depth-First Search 321
9.6.1. Undirected Graphs 322
9.6.2. Biconnectivity 324
9.6.3. Euler Circuits 328
9.6.4. Directed Graphs 331
9.6.5. Finding Strong Components 333

9.7. Introduction to NP-Completeness 334
9.7.1. Easyvs. Hard 335
9.7.2. The Class NP 336
9.7.3. NP-Complete Problems 337

Summary 339
Exercises 339
References 345

10  Algorithm Design Techniques 349

10.1.  Greedy Algorithms 349
10.1.1.  ASimple Scheduling Problem 350
10.1.2.  Huffman Codes 353
10.1.3.  Approximate Bin Packing 359

10.2. Divide and Conquer 367
10.2.1.  Running Time of Divide and Conquer Algorithms 368
10.2.2.  Closest-Points Problem 370
10.2.3. The Selection Problem 375
10.2.4. Theoretical Improvements for Arithmetic Problems 378
10.3. Dynamic Programming 382
10.3.1.  Using a Table Instead of Recursion 382
10.3.2.  Ordering Matrix Multiplications 385
10.3.3.  Optimal Binary Search Tree 389
10.3.4.  All-Pairs Shortest Path 392
10.4. Randomized Algorithms 394
10.4.1. Random Number Generators 396
104.2. SkipLists 399
10.4.3. Primality Testing 401
10.5. Backtracking Algorithms 403
10.5.1.  The Turnpike Reconstruction Problem 405
10.5.2. Games 407
Summary 415
Exercises 417
References 424



11  Amortized Analysis 429

11.1.
11.2.
11.3.
11.4.

11.5.

An Unrelated Puzzle 430
Binomial Queues 430
Skew Heaps 435

Fibonacci Heaps 437

11.4.1.  Cutting Nodes in Leftist Heaps 430
11.4.2. Lazy Merging for Binomial Queues 441
11.4.3. The Fibonacci Heap Operations 444
11.4.4.  Proof of the Time Bound 445

Splay Trees 447
Summary 451
Exercises 452
References 453

12 Advanced Data Structures and Implementation

12.1.
12.2.

12.3.
12.4.
12.5.
12.6.
12.7.

Top-Down Splay Trees 455
Red Black Trees 459

12.2.1.  Bottom-Up Insertion 464
12.2.2.  Top-Down Red Black Trees 465
12.2.3.  Top-Down Deletion 467
Deterministic Skip Lists 471
AA-Trees 478

Treaps 484

k-d Trees 487

Pairing Heaps 490
Summary 496

Exercises 497

References 499

455

CONTENTS

xvii



‘ | CHAPTER 1

Introduction

In this chapter, we discuss the aims and goals of this text and briefly review
programming concepts. We will
o See that how a program performs for reasonably large input is just as important
as its performance on moderate amounts of input.
o Briefly review recursion.

1.1. What's the Book About?

Suppose you have a group of N numbers and would like to determine the kth largest.
This is known as the selection problem. Most students who have had a programming
course or two would have no difficulty writing a program to solve this problem.
There are quite a few “obvious™ solutions.

One way to solve this problem would be to read the N numbers into an array,
sort the array in decreasing order by some simple algorithm such as bubblesort, and
then return the element in position k.

A somewhat better algorithm might be to read the first k elements into an array
and sort them (in decreasing order). Next, each remaining element is read one by
one. As a new element arrives, it is ignored if it is smaller than the kth element
in the array. Otherwise, it is placed in its correct spot in the array, bumping one
element out of the array. When the algorithm ends, the element in the kth position
is returned as the answer.

Both algorithms are simple to code, and you are encouraged to do so. The
natural questions, then, are which algorithm is better and, more important, is either
algorithm good enough? A simulation using a random file of 1 million elements
and k = 500,000 will show that neither algorithm finishes in a reasonable amount
of time; each requires several days of computer processing to terminate (albeit
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eventually with a correct answer). An alternative method, discussed in Chapter 6,
gives a solution in about a second. Thus, although our proposed algorithms work,
they cannot be considered good algorithms, because they are entirely impractical for
input sizes that a third algorithm can handle in a reasonable amount of time.

A second problem is to solve a popular word puzzle. The input consists of a
two-dimensional array of letters and a list of words. The object is to find the words
in the puzzle. These words may be horizontal, vertical, or diagonal in any direction.
As an example, the puzzle shown in Figure 1.1 contains the words this, two, fat,
and that. The word this begins at row 1, column 1, or (1,1), and extends to (1,4);
two goes from (1,1) to (3,1); fat goes from (4,1) to (2,3); and that goes from (4,4)
to (1,1).

Again, there are at least two straightforward algorithms that solve the problem.
For each word in the word list, we check each ordered triple (row, column,
orientation) for the presence of the word. This amounts to lots of nested for loops
but is basically straightforward.

Alternatively, for each ordered quadruple (row, column, orientation, number
of characters) that doesn’t run off an end of the puzzle, we can test whether the
word indicated is in the word list. Again, this amounts to lots of nested for loops. It
is possible to save some time if the maximum number of characters in any word is
known.

It is relatively easy to code up either method of solution and solve many of the
real-life puzzles commonly published in magazines. These typically have 16 rows, 16
columns, and 40 or so words. Suppose, however, we consider the variation where
only the puzzle board is given and the word list is essentially an English dictionary.
Both of the solutions proposed require considerable time to solve this problem and
therefore are not acceptable. However, it is possible, even with a large word list, to
solve the problem in a matter of seconds.

An important concept is that, in many problems, writing a working program is
not good enough. If the program is to be run on a large data set, then the running
time becomes an issue. Throughout this book we will see how to estimate the
running time of a program for large inputs and, more important, how to compare
the running times of two programs without actually coding them. We will see
techniques for drastically improving the speed of a program and for determining
program bottlenecks. These techniques will enable us to find the section of the code
on which to concentrate our optimization efforts.

Figure 1.1 Sample word puzzle

1 2 3 4
1 t h i s
2 w a t s
3 o a h g
4 f g d t




