! 4
r

Fluid Flow, Heat and
Mass Transfer at Bodies
of Different Shapes
% Numerical Solutions

Kuppalapalle Vajravelu
Swati Mukhopadhyay



Fluid Flow, Heat and
Mass Transfer at Bodies
of Different Shapes

Numerical Solutions

Kuppalapalle Vajravelu

The University of Burdwan, India

AMSTERDAMNRGSTON s BEFOEL BERG * LONDON
NEW YORK = OXFORD - PARIS - SAN DIEGO
SAN FRANCISCO + SINGAPORE * SYDNEY * TOKYO
Academic Press is an imprint of Elsevier




Academic Press is an imprint of Elsevier

125 London Wall, London, EC2Y 5AS, UK

525 B Street, Suite 1800, San Diego, CA 92101-4495, USA

225 Wyman Street, Waltham, MA 02451, USA

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

© 2016 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional practices, or
medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described herein.
In using such information or methods they should be mindful of their own safety and the safety
of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

ISBN: 978-0-12-803733-1

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2015939630

For information on all Academic Press publications
visit our website at http://store.elsevier.com/

H Working together
E _ A48 o grow libraries in

asvi| BookBd developing countries

www.elsevier.com ¢ www.bookaid.org




Fluid Flow, Heat and Mass Transfer
at Bodies of Different Shapes



R s, PARIEIELEIN:  www. ertongbook. com



Preface

Fluid mechanics is one of the oldest branches of applied mathematics. It is also the
foundation of the understanding of various aspects of science and engineering. A wide
variety of mathematical problems, appearing in areas as diverse as fluid mechanics,
mechanical engineering, chemical engineering, theoretical physics, and aerospace
engineering, have been solved by means of analytical or numerical methods. Though
analysis of different types of fluid flow and heat or mass transfer problems are avail-
able in the open literature, there are still a number of gaps that are to be filled up. There
are several excellent books covering different aspects of fluid flow and heat or mass
transfer. Yet one still looks for a systematic and sequential analysis that helps in under-
standing this particular area of interest.

To help students and researchers acquire a deeper understanding of the character-
istics of fluid flow and heat and mass transfer, this monograph aims to present, in gen-
eral, a study of transport phenomena. It is well known that for external flows, the shape
of the object influences the flow over an object (i.e., a body) significantly. As a result,
it affects the heat and mass transfer characteristics. In other words, the book aims to
help readers develop their understanding in this particular field without spending huge
time in searching the endless literature on this area. To help develop a clear insight, we
discuss several flow features. By maintaining the applicability of the obtained results,
we also discuss several cases of physical problems.

In selecting specific problems to work through, we have restricted our attention to
the phenomena of fluid flow and heat or mass transfer as such problems introduce a
wide variety of mathematical problems of interest. Hence, in order to illustrate various
properties and tools useful in analyzing the problems, we have selected recent research
in the area of fluid flow and heat or mass transfer.

We appreciate the support and motivation of the editor Glyn Jones and the editorial
project manager Steven Mathews. We also acknowledge the role of Elsevier (Oxford)
for making this book a reality. Thanks to Mr. Sudipta Ghosh (PhD student of Dr. Swati
Mukhopadhyay) for his help in drawing some of the figures. We thank Prof. Mike
Taylor for reading the entire manuscript and suggesting some needed changes. The
authors are grateful to all the authors of the articles listed in the bibliography of this
book. The authors are also very much thankful to their coauthors. Finally, we very
much like to acknowledge the encouragement, patience, and support provided by
the members of our families.

K. Vajravelu
Orlando, Florida
S. Mukhopadhyay
Burdwan, India
2015






Introduction

Air and water are the most important constituents of the environment we live in, so
that almost everything we do is connected to the science of fluid mechanics. For exam-
ple, the flight of birds in the air and the motion of fish in the water can be explained
from the perspective of fluid mechanics [1]. The designs of airplanes and ships are
based on the theory of fluid mechanics. Fluid mechanics is one of the oldest branches
of applied mathematics, and the foundation of the understanding of different aspects
of science and engineering [2-5]. From the nineteenth century, the scope of fluid
mechanics has steadily broadened, as the study of hydraulics was associated with
the growth of the fields of civil engineering and naval architecture. In recent times,
the development of the different branches of engineering, namely, aeronautical, chem-
ical, and mechanical engineering, have given additional stimuli to the study of fluid
mechanics. It now ranks as one of the most important basic subjects not only in applied
mathematics but also in engineering [6]. Now, it is a subject of widespread interest in
almost all fields of engineering as well as in astrophysics, meteorology, physical
chemistry, plasma physics, geophysics, biology, and biomedicine [7-9].

In nature, fluid flow over bodies occurs frequently and gives rise to numerous phys-
ical phenomena, for example, drag force acting on trees, underwater pipelines, auto-
mobiles, the lift generated by airplane wings, upward draft of rains, dust particles in
high winds, and transportation of red blood cells in blood flow (see, [6]). Sometimes,
fluid moves over a stationary body, for example, wind blowing over a building, or a
body moving through a quiescent fluid or a bus moving through air. Such motions are
referred to as flows over bodies or external flows [10]. The shape of the object has
profound influence on the flow over a body and thus affects significantly the heat
and mass transfer characteristics. Flow past bodies can be classified into incompress-
ible and compressible flows. Compressibility effects are neglected at velocities below
360 km/hour, and such types of flows are known as incompressible flows. In this book,
we are concerned with incompressible fluid flows [11-17].

Because of the recent high demand in the need for understanding and analyzing the
problems we come across in science and engineering, we feel that there is a need for a
book of this kind. The underlying aim of this book is to present transport phenomena
that will help students and researchers in the field of fluid mechanics in acquiring
a deeper understanding of the characteristics of flow and heat and mass transfer
(see, e.g., [18]). Obviously, part of the material in the book can be conveniently used
as an introductory course material for researchers working in boundary layer theory,
flow, and heat and mass transfer [19—45]. Also, the book is intended for graduate stu-
dents in mathematics, engineering, and in the mathematical sciences. In addition, the
material in the book may be of interest to researchers working in physical chemistry,
soil physics, meteorology, and nanotechnology.



X Introduction

The book is designed to accommodate several topics of varying emphasis, and the
chapters comprise fairly self-contained material from which one can make various
coherent selections. There are several underlying themes that become apparent when
one examines the literature on the subject. We hope to bring out clear insight by dis-
cussing several flow features. Also, we discuss several cases of physical problems in
general.

The outline of the book will be as follows. Chapter 1 deals with the numerical
method(s) adopted in these works. In Chapters 2—4, which comprise Part I of the book,
we present the flow past surfaces of different types, namely, stretching, shrinking, and
flat surfaces. This first set of chapters provides explanations intended for general
readers and can be directly employed for problems in engineering, applied physics,
and other applied sciences. We keep the discussion broad based so as to provide a
framework for researchers. In order to motivate the reader and provide a good under-
standing of the subject matter, at the end of Chapters 2—4, we provide multiple exam-
ples of problems that have been solved numerically.

In Part IT of the book, Chapters 56, we shift the focus to concrete examples and
problems related to bluff bodies in fluid mechanics and heat and mass transfer. Here
the governing equations of the problems are highly nonlinear differential equations.
The problems considered in this Part will help the reader understand problems of phys-
ical relevance and apply it to the other physical fields of interest. We group such prob-
lems into three chapters: general fluid flow past a cylinder in Chapter 5, fluid flow
over a sphere in Chapter 6, and finally problems related to flow past a wedge in
Chapter 7.
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Numerical methods

The governing equations of fluid flow problems are generally of a nonlinear and
boundary value type. Usually, the exact solutions of the boundary value problems
(BVPs) are very difficult to obtain, and so we have to use numerical methods.
For some special classes of flow problems, a set of partial differential equations
are transformed into a set of ordinary differential equations with the help of similarity
variables. The transformed (final) equations then can be solved analytically or numer-
ically. The procedure for finding a numerical solution for a BVP is generally more
difficult than that of an initial value problem (IVP). A number of methods can be used
to solve linear BVPs. The method of differences is useful in such cases. But this
method cannot be used for nonlinear equations. Other methods can be used to obtain
linearly independent solutions, which can then be combined in such a way that they
satisfy the boundary conditions (Mukhopadhyay [1]). For such problems, the differ-
ence method can be adapted. The most popular numerical method is the shooting
method. The shooting method can be used for both linear and nonlinear problems.
Because the convergence of the method depends on a good initial guess, there is
no guarantee that the method will converge. But the method is easy to apply, and when
it does converge, it is usually more efficient than other methods (Mukhopadhyay [1],
Mukhopadhyay and Layek [2]). Moreover, the shooting method gives more accurate
results if guess values (slopes) are chosen correctly.

The basic idea of a shooting method is to replace the BVP by some IVP where the
slope at the initial point is obviously unknown. We can guess this unknown quantity,
and then, using iteration, the guess value can be improved.

The shooting method consists of the following steps:

1. transformation of the given BVP to an IVP,
2. finding a solution of the IVP, and
3. finding a solution of the given BVP.

Let us consider a nonlinear second-order differential equation y// =f(x, y, /) with
the boundary conditions y(a) =y and y(b) = y;.

At first, we set y/ =p and p/ =f(x,y, p) with y =y at x= a. Actually, the equation
is rewritten in terms of a first-order system of two unknown functions. Because these
equations are nonlinear, we cannot get the solution by superposition principle. In order
to integrate the above system as an IVP, we require a value for p at x =a that is y(a).
Generally, we take a guess for p(a) and use it to obtain a numerical solution.
Then comparing the calculated value for y at x = b with the given boundary condition
y=y; at x=b and adjusting the guess value, p(a), we get a better approximation for
the solution. The derivative at x = a gives the trajectory of computed solution. That is
why, it is called shooting method. Basically, we seek a solution that also satisfies
the relation y(b) =y,. A suitable solution can be found by successively refining the
interval. With the help of linear interpolation or other root-finding methods, it is also

Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes. http:/dx.doi.org/10.1016/B978-0-12-803733-1.00001-6
© 2016 Elsevier Ltd. All rights reserved.
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possible to improve the obtained solution. To start the integration, the initial slope,
that s, y’ (a), is required, and the shooting method depends on the choice of the value
of y(a).

To explain the method, we consider the equation

1

)+ 3£ ()f" (n) =0, (L.1)

along with the boundary conditions
f(0)=0, f/(0)=0, (1.2)
fl(o0) =1, (1.3)

which is a third-order nonlinear BVP.

Now, the key factor is to choose an appropriate and suitable finite value of 7 as
1 — 00, say 1.,. Here n=n,, corresponds to the edge of the boundary layer. For com-
putational purposes, 7., is to be chosen arbitrarily larger than the boundary layer thick-
ness. The most important factor of the shooting method is to choose an appropriate finite
value of 7. In order to determine 7, for the BVP stated by equations (1.1)+(1.3), we
start with some initial guess value a that must be determined so that the resulting solu-
tions yield the prescribed value f/ =1 atn =y, for some particular set of physical
parameters (Mukhopadhyay and Layek [2]). We therefore guess at the initial slope,
and an iterative procedure is set up for convergence to the correct slope. A normally
better approximation to a can now be obtained by the following linear interpolation
formula:

f/(”oo) _f/(am 'Too)
f/(al’”oo) _f/(a09 ’700),

a=ay+(a —ay)

where ay, @, are two guesses at the initial slope f(0) andf/ (o, 5, ), f/ (@1, 115, ) are the
values of f/ at N ="My- We now integrate the differential equation using the initial
values f(0) =0, f/(0) =0, andf// (0) = a3 to obtain f/ (a3, 1, ). Using linear interpo-
lation based on a, &, we can obtain a next approximation a;. This process is repeated
until convergence is obtained. The convergence depends on a good initial guess
(Conte and Boor [3]).

The solution procedure is repeated with another large value of 5, until two suc-
cessive values of f/(0) differ only by the specified significant digit. The last value
of 7, is finally chosen to be the most appropriate value of the limit #_,. The value
of 7, may change for another set of physical parameters, if involved in the problem.
Once the finite value of 77, is determined, then the integration is carried out. We com-
pare the calculated value for f’ at n=15 (say) with the given boundary condition
f/(15) =1, and the estimated value is adjusted using the secant method to get a better
approximation for the solution (Mukhopadhyay [4]).



