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PREFACE

The prerequisites for this book are the “standard”’ first-semester course
_in number theory (with incidental elementary algebra) and elementary
calculus. There is no lack of suitable texts for these prerequisites (for
example, An Introduction to the Theory of Numbers, by I. Niven and H. S.
Zuckerman, John Wiley and Sons, 1960, can be cited as a book that intro-
duces the necessary algebra as part of number theory). Usually, very little
else can be managed in that first semester beyond the transition from
improvised combinatorial amusements of antiquity to the coherently
organized background for quadratic reciprocity, which was achieved in
the eighteenth century.

The present text constitutes slightly more than enough for a second-
semester course, carrying the student on to the twentieth century by
motivating some heroic nineteenth-century developments in algebra and
analysis. The relation of this textbook to the great treatises will necessarily
be like that of a hisforical novel to chronicles. We hope that once the
student knows what to seek he will find ““chronicles” to be as exciting as a
“historical novel.” '

The problems in the text play a sigaificant role and are intended to
stimulate the spirit of experimentation ‘which has traditionally ruled
number theory and which has indeed become resurgent with the realization
of the modern computer. A student completing this course should acquire
an appreciation for the historical origins of lincar algebra, for the zeta-
function tradition, for ideal class structure, and for genus theory. These
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vi PREFACE

ideas, although relatively old, still make their influence felt on the frontiers
of modern mathematics. Fermat’s last theorem and complex multiplication
are unfortunate omissions, but the motive was not to depress the degree
of difficulty so much as it was to make the most efficient usage of one
semester.

My acknowledgments are many and are difficult to list. I enjoyed the
benefits of courses under Bennington P. Gill at City College and Saunders
MacLane at Harvard. The book profited directly from suggestions by my
students and from the incidental advice of many readers, particularly
Burton W. Jones and Louis J. Mordell. I owe a special debt to Herbert S.
Zuckerman for a careful reading, to Gordon Pall for major improvements,
and to the staff of John Wiley and Sons for their cooperation.

HARVEY COHN
Tucson, Arizona
October 1961
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INTRODUCTORY
SURVEY

DIOPHANTINE EQUATIONS

The most generally enduring problem of number theory is probably that
of diophantine equations. Greek mathematicians were quite adept at
solving in integers z and y the equation

ax+by=c,

where g, b, and c are any given integers. The close relation with the greatest
common divisor algorithm indicated the necessity of treating unmique
Jfactorization as a primary tool in the solution of diophantine equations.

The Greek mathematicians gave some sporadic attention to forms of the
more general equation

(1) f(=, y) = Az* 4+ Bxy + Cy* + Dx + Ey + F = 0,

but achiev;l( no sweeping resulis. They probably did not know that every
equation of this kind can be solved “completely” by characterizing all
solutions in a finite number of steps, although they had success with special
cases such as 2% — 3y = 1. In fact, they used continued fraction tech-
niques in both linear and quadratic problems, indicating at least esthetically
a sense of unity. About 1750 Euler and his contemporaries became aware

This section presupposes some familiarity with elementary concepts of group,
congruence, Euclidean algorithm, and quadratic reciprocity (which are reviewed in
Chapter I).
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2 INTRODUCTORY SURVEY

of the systematic solvability in a finite number of steps. Yet it was not
until 1800 that Gauss gave in his famous Disquisitiones Arithmeticae the
solution that still remains a model of perfection.

Now a very intimate connection developed between Gauss’s solution and
quadratic reciprocity, making unique factorization (in the linear case) and
quadratic reciprocity (in the quadratic case) parallel tools. Finally, about
1896, Hilbert achieved the reorganization of the quadratic theory, making
full use of this coincidence and thus completing the picture.

MOTIVATING PROBLEM IN QUADRATIC FORMS

The first step in a general theory of quadratic diophantine equations was
probably the famous theorem of Fermat (1640) relating to a (homogeneous)
quadratic form in z, y.

A prime number p is representable in an essentially unique manner by the
form 2% + 42 for integral x and y if and only if p = 1 modulo 4 (or p = 2).

It is easily verified that 2 = 124+ 12,5 =22 + 1%, 13 =32 4 22 17 =
4% 4 12,29 = 5% 4 22, etc., whereas the primes 3, 7, 11, 19, etc., have no
such representation. The proof of Fermat’s theorem is far from simple and
is achieved later on as part of a larger result.

At the same time, Fermat used an identity from antiquity:

(@ + 9@ + ¥?) = (@2’ — ') + (¥ + ='y)",
easily verifiable, since both sides equal 222 + y%'2 + 2%y + 2%'2. He
used this formula to build up solutions to the equation
) 2+ 9yi=m

for values of m which are not necessarily prime. For example, from the
results
¥+22=13 (@=3y=2,
24 12=5, @=2y=1,
we obtain
TP+ 482=65 (zz' —yy =4, zy +2'y=17).
If we interpret the representation for 13 as

(=32+22=13 (z=-3,y=2),
whereas
24+12=5  (@=29=1,
then we obtain

(—8)* + 12 = 65, (zz' —yy' = —8, zy’ + 2’y = 1);
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but the reader can verify that 65 = 7% + 4% = 82 + 12 are the only repre-
sentations obtainable for 65 in the form 2? + #?, to within rearrangements
of summands or changes of sign. If we allow the trivial additional oper-
ation of using (z, %), which are not relatively prime ((kz)?* + (ky)? = k*m),
we can build up all solutions to (2), from those for prime m.

Thus Fermat’s result, stated more compactly, is the following:

Let Oz, y) = 2* + ¥
Then all relatively prime solutions (x, y) to the problem of representing
O, y)=m

for m any integer are achieved by means of the successive application of two
results called genus and composition theorems.

GENUS THEOREM
3 O, y)=p

can be solved in integral x,y for p a prime if and only if p = 1 (mod 4), or
p = 2. The representation is unique, except for obvious changes of sign or
rearrangements of x and y.

COMPOSITION THEOREM

(4) 0z, v) 0, y") = Oz’ — yy', 2’y + 2y).

In the intervening years until about 1800, Euler, Lagrange, Legendre,
and others invented analogous results for a variety of quadratic forms.
Gauss (1800) was the first one to see the larger problem and to achieve a
complete generalization of the genus and composition theorems. The
main result is too involved even to state here, but a slightly more difficult

special result will give the reader an idea of what to expect. (See Chapter
XIII.)

Let 0\, y) = 2 + 59,
s, y) = 2% 4 2ay + 32

Then all relatively prime solutions (x, y) to the problem of representing

Oz, y)=m

or
Oy, y) =m



4 INTRODUCTORY SURVEY
Jor m any integer are achieved by means of the successive application of the
following two results.

GENUS THEOREM

Ql(x ’ y)
5)
( [Qa(x’ y)

:I = p, a prime, if and only if p = (;’ 3) (mod 20),

b

in an essentially unique fashion. (The only special exceptionsare, Q,(0, 1) =
5, 04(1,0) = 2.)

COMPOSITION THEOREM

0,2, 9) 0, ¥) = Q,(2x’ — Syy', 2’y + =y')
(6a) { 04(z,9) Qo' y") = Qqxa’ — 2’y — 3yy', 2y’ + 22’y + yy')
02, Y) 02, y") = 01222 + xy’ + &'y — 2yy', 2" + 2"y + yy').

One may protest (in vain) that he is interested only in Q,(=, ¥), but it is

impossible to separate Q,(z,y) and Qu(x, ) in the composition process
For instance,

(L) =7 (=1 9=1),
2:0,)=3, (=09 =1,

and, from the last of the composition formulas,
0,(-1,2)=21, ez’ +ay +2'y—2yy' = —1,29 + 2y + yy' =2).

Thus, to represent 21 by Q,, we are forced to consider possible repre-
sentations of factors of 21 by Q,. The reader may find the following
exercise instructive along these lines:

Find a solution to Q,(z, ) = 29 by trial and error and build from the
preceding results solutions to Q,(z, ) = 841 and Q,(x, y) = 203.

Those readers who are familiar with the concept of a group will recognize
system (6a) symbolically as

[ Q,* = Q, (identity),
(6b) Q.Q; = Q,,
1 Q22 = Q..

In this manner we are led from quadratic forms into algebra!
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USE OF ALGEBRAIC NUMBERS

The reader will probably note that the decomposition theorem resembles
the method of multiplicaticn of complex numbers:

(7a) @+ i) + i) = (@' — yy) + i@y’ + y2),
where, of course, i = v/ —1. The ccmposition theorems for Q,(z, y) and

Q,(z, y) can be similarly explained by use of v/ =5 if we solve for z” and y"
in each of the following equations:

(@ 4+ V=59)@ +V=5)=@" + V=5,
(7b) @+ V=592 +y +V=5)=22"+y + V=5
@z +y+ V=592 +y +V=5) =2a" + V=5,

but we shall defer all details to Chapter XIII.
The important point, historically, is that before the time of Gauss
mathematicians strongly feared the possibility of developing a contradic-
tion if reliance was placed on such numbers as V=1,V —_5, and they
would use these numbers “experimentally,” although their final proofs
were couched in the immaculate language of traditional integral arithmetic;
vet eventually they had to accept radicals as a necessary simplifying device.
A second guiding influence in the introduction of radicals was the famous
conjecture known as Fermat's last theorem:
If n is an integer >3, the equation

xn+yn'=zn

has no solution in integers (z, y, z), except for the trivial case in which
zyz = 0. Theresultisstill not proved for all n, norisit contradicted.
Here Cauchy, Kummer, and others achieved, for special n, remarkable
results by factoring the left-hand side. We shall ignore this very important
development in order to unify the material, but we cannot fail to see its
relevance (say) for n = 3, if we write

2+ 9=+ 9y + py)z + p%),
p=(=1+V=3)2p2=(-1 —VvV=3)

The introduction of such numbers as p, v/ ——1, 4/ —5 resulted in a further
development by Dedekind (1870) of a systematic theory of algebraic
numbers. These are quantities « defined by equations, for instance, of
degree k,

A + A1 4+ 4, =0
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with integral co>fficients. It turned out that quadratic surds (k = 2) were
an extremely significant special case whose properties to this very day are
not fully generalized to k > 2. Thus the importance of this special
(quadratic) case cannot be overestimated in the theory of algebraic numbers
of arbitrary degree k.

In this book we try to get the best of both worlds: we use quadratic
forms with integral coefficients or factor the forms (using algebraic number
theory), depending on which is more convenient.

PRIMES IN ARITHMETIC PROGRESSION

If we examine Qy(x, y) and Q,(%, y) more carefully, we find that in both
cases the discriminant is —20, (the discriminant is the usual value, d =
B? — 4A4C for the form Aa? 4+ Bzy + Cy?). Actually, the number of
forms required for a complete composition theorem associated with a
discriminant is (essentially) a very important integer called the class
number, written h(d). Thus, referring to Q(z, y), we find A(—4) = 1; and
referring to Qy(x, y), O,(x, y), we find /(—20) = 2. The value of the class
number is one of the most irregular functions in number theory. Gauss
(1800) and Dirichlet (1840), however, did obtain “exact” formulas for the
class number. They used continuous variables and thelimiting processes of
calculus, or the tools of analysis.

One of the most startling results in number theory developed when
Dirichlet used this class-number formula to show the following result:

There is an infinitude of primes in any arithmetic progression

aa+da+2da+3d,---,
provided (a, d) = 1, and d > 0.

The fact that quadratic forms had originally provided the clue to a
problem involving the linear form a + xd has not been completely assimi-
lated even today. Despite the occurrence of “direct” demonstrations of
the result of Dirichlet, the importance of the original ideas is manifest in
the wealth of unsolved related problems in algebraic number theory.

We are thus concerned with the remarkable interrelation between the
theory of integers and analysis. The role of number theory as a fountain-
head of algebra and analysis is the central idea of this book.
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