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Preface

The NATO Advanced Research Workshop on Signal Processing and Pattern
Recognition in Nondestructive Evaluation (NDE) of Materials was held
August 19-22, 1987 at the Manoir St-Castin, Lac Beauport, Quebec, Canada.

Modern signal processing, pattern recognition and artificial
intelligence have been playing an increasingly important role in improving
nondestructive evaluation and testing techniques. The cross fertiligzation
of the two major areas can lead to major advances in NDE as weéll as
presenting a new research area in signal processing. With this ip mind,
the Workshop provided a good review of progress and comparison of
potential techniques, as well as constructive discussions and suggestions
for effective use of modern signal processing to improve flaw detection,
classification and prediction, as well as material characterization.

This Proceedings volume includes most presentations given at the
Workshop. This publication, like the meeting itself, is unique in the
sense that it provides extensive interactions among the interrelated areas
of NDE. The book starte with research advances on inverse problems and
then covers different aspects of digital waveform processing in NDE and
eddy current signal analysis. These are followed by four papers of
pattern recognition and AI in NDE, and five papers of image processing and
reconstruction in NDE. The last two papers deal with parameter estimation
problems. Though the list of papers is not extensive, as the field of NDE
signal processing is very new, the book has an excellent collection of
both tutorial and research papers in this exciting new :.ei.l. While most
signal processing work has not yet been integrated intc practical NDE
systems, as pointed out by Dr. L.J. Bond at the Workshop discussion
session, the future direction clearly shows greatly increased use of
signal processing in NDE. i

I am grateful to all participants for their active participation that
made the Workshop very productive, and to NATO Scientific Affairs Division
for support. The Workshop format is indeed ideal for a research meeting
like this that brings together an interdisciplinary group of researchers.
I am confident that this publication can be equally successful in helping
to foster continued research interest in NDE signal processing.

C.H. Chen
Workshop Directer



Table of Contents

Group Photo’

Preface
by C.H. Chen

RESEARCH ON INVERSE PROBLEMS

1.

2.

DIGITAL WAVEFORM FROCESSING IN NDE

S.J. Norton, J.A. Simmons, A.H. Kahn and H.N.G. Wadley, "Research

inverse problems in materials science and engineering"”

inversion"

S. Haykin, "Modern signal processing"

method of scatterer density estimation”

processing techniques for improved ultrasonic imaging of
materials"”

J. Saniie, N.M. Bilgutay and T. Wang, "Signal processing of

of materials - a review"

volution of ultrasonic traces"

domain by means of the Wigner-Ville distribution"

ultrasonic reflections in composite materials” -

EDDY CURRENT SIGNAL ANALYSIS

10. 8.S. Udpe, "Signal processing for eddy current nondestructive

evaluation"

11. L.D. Sabbagh and H.A. Sabbagh, "Eddy current modeling and signal

1
L.J. Bond, J.H. Rose, S.J. Wormley and S.P., Neal, "Advances in Born
23
39
V.L. Newhouse, G.Y. Yu and Y. Li, "A split spectrum processing
49
N.M. Bilgutay. J. Saniie and U. Bencharit, "Spectral and spatial
71
ultrasonic backscattered echoes for evaluating the microstructure
87
C.A. Zala, I. Barrodale and K.I. McRae, "High resolution decon-
101
P. Flandrin, "Nondestructive evaluation in the time-frequency
' 109
D. Kishoni, "Pulse shaping and extraction of information from
117
123
145

processing in NDE"




VHI

PATTERN RECOGNITION AND AI IN NDE

12. C.H. Chen, "High resolution spectral analysis NDE techniques for

155

flaw characterization prediction and discrimination"

13. R.W.Y. Chan, D.R. Hay, J.R. Matthews and H.A. MacDonald, "Automated

ultrasonic system for submarine pressure hull inspection'"-~-=—-—--

14. V., Lacasse, J.R. Hay and D.R. Hay, "Pattern recognition of ultrasonic

signals for detection of wall thinning"

189

15. R.B. Melton, "Knowledge based systems in nondestructive

evaluation"

3-D AND 2-D SIGNAL ANALYSIS IN NDE

16, K.C. Tam, "Limited-angle image reconstruction in nondestructive

199

205

evaluation"”

17. M. Soumekh, "The effects of limited data in multi-frequency

reflection diffraction tomography"

18. R.S. Acharya, "A 3-D image segmentation algorithm"

231

241

19, X, Maldague, J.C. Krapex and P. Cielo, "Processing of thermal
images for the detection and enhancement of subsurface flaws in

257

composite materials”

20. C.H. Chen and R.C. Yen, "Laplacian pyramid imege data compression

287

using vector quantization"

PARAMETER ESTIMATION CONSIDERATION
21, J.F. Bdhme, "Parameter estimation in array processing"-------=-=--

22. F. El-Hawary, "Role of peak detection and parameter estimation in
nondestructive testing of materials"

LIST OF PARTICIPANTS

327

343



RESEARCH ON INVERSE PROBLEMS IN MATERIALS SCIENCE AND ENGINEERING

S. J. Norton, J. A. Simmons, A. H. Kahn and H. N. G. Wadley
Institute for Materials Science and Engineering, National Bureau of Standards

Gaithersburg, Maryland 20899, USA

Abstract

The role of inverse problems in the characterisation of materials is discussed. Four such problems
are described in detail: deconvolution for acoustic emission, tomographic reconstruction of temperature
distribution, electrical-conductivity profiling and inverse scattering. Each exploits a priori information in

a different way to mitigate the ill-conditioning inherent in most inverse problerns.

Introduction

The importance of inverse problems in the characterisation and processing of materials has increased
considerably with the recent growth of advanced sensor technology. Frequently, the quantitative infor-
mation of interest must be extracted from a physical measurement (or more typically, a set of physical
measurements) that by itself may be only indirectly related to the information desired and thus difficult
to interpret. For instance, sensor measurements often yield some form of spatial and/or temporal average
of the desired information; such an average may, for example, be expressed mathematically in the form of
an integral equation (e.g., a convolution) or a system of linear equations (e.g., as in'tomography), where
the mathematical relationship is derived from a kncwledge of the physics governing the measurement.

In an inverse problem one attempts to extract the desired information from measurements containing
noise on the basis of an idealised model of the measurement process. The problem is made more difficult
since inverse problems are characteristically ill-conditioned; that is, small errors in the measurcment
typically lead to large errors in the solution. However, nowadays we know that the key to mitigating such
ill-conditioning is the judicious use of a priori information. The incorporation of such a priori information
often takes the form of constraining the solution to a class of physically reasonable possibilities, or it may
take the form of incorporating a priori probabilistic information about the solution or the statistical
distribution of measurement errors. The use of a priori information necessarily introduces an element
of subjectivity into the problem, since often the choices of a priori constraints (or how they are best
incorporated) are not clear cut; such choices are usnally decided by experience derived from real prohlems.

This paper emphasises the point that inverse problems in materials science often offer an unusual
abundance of physically-motivated a priori constraints; certainly the possibilities appear greater than in

many other fields where inverse problems have traditionally played an important role, such as in medical
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imaging and geophysical prospecting. As a result, the nondestructive characterisation of materials based
on ultrasonic and electromagretic sensors offers an unusually fertile area for innovation in inverse-problem
development and application. In this paper we will see several examples of the use of a priori information in
problems that have arisen in our work on acoustic emission, ultrasonic and electromagnetic nondestructive
evaluation. )

In the analysis of acoustic emission signals, a problem of central importance is the deconvolution of
the acoustic-emission source signal from t! e transducer response (characterised by the transducer impulse
response) and propagation effects {characterised by the temporally-de sendent elastic Green’s function of
the material). With this problem in mind, a new and robust approack to deconvolution was developed
that ia particularly well suited for deconvolving causal signals [1}. This approach is described in the
next section. In the area of ultrasonics, we describe a technique based on time-of-flight tomography for
reconstructing two-dimensional temperature distributions in hot metallic bodies {2]. In this problem,
a priori heat-flow information is utilised to help mitigate the effects of revere ill-conditioning in the
inversion. The third example is drawn from the area of electromagnetic NDE, in which we describe
the problem of reconstructing one-dimensional conductivity profiles from variable-frequency impedance
measurements [3]. We conclude with a description of a new iterative approach to the exact, nonlinear
inverse-scattering problem [4]. A significant result reported here is the use of an exact expression for the
gradient of the measurements with respect to the scattering model. The exact gradient leads to a mean-
square-error minimisation algorithm with better stability and a higher rate of convergence compared with

most other proposed iterative inverse-scattering schemes.

1. Deconvolution for Acoustic Emission

Acoustic emission‘ may be regarded as naturally generated ultrasound produced by sudder, localized
changes of stress in an elastic body. The analysis of acoustic emission signals is complicated by the
fact that the observed signal is the two-fold convolution between the source signal, the elastic Green’s
function characterising the propagating inedium, and the detecting transducer’s impulse response. In
principle, the latter two response functions can be calculated or measured. The problem then reduces
to deconvolving the source signal from the transducer and material response functions in the presence of
noise.

A wide variety of numerical deconvolution schemes have been proposed over the years by researchers
in di.scipline; ranging from seismology to astronomy. Most modern deconvolution methods exploit scme
form of regularisation to reduce the sensitivity to measurement errors of an inherently ili-posed inversion
problem. A widely-used regularisation approach is to impose some generalised form of smoothing con-
straint, of which Tikhonov regularisation is the prototype [5]. Ti:e latter approach has the undesirable
side effect of destroying the causality of the deconvolved signal. The algorithm described below, however,
not only preserves causality, but may be thought of as yielding the “best” causal estimate of the original

{deconvolved) signal in a least-squares sense [1). The method exploits the fact that the roots of the Z



transform (or the related Y transform defined below) of a discrete {sampled) signal are preserved under
convolution. Recent progress in the development of polynomial root-finding algorithms has now mac:
this powerful approach practical for time series exceeding several thousand samples.

Consider the deconvolution of two discrete-time (i.e., sampled} waveforms represented by the fi-
nite time series {ax,k = 0,1,...,N — 1}, {be,k = 0,1,...,N — 1}, and their convolution {¢x, k =
0,1,...,2N — 1}, where

k-

o = Zf‘k—:’ bs. (1.1)

=0 i
Note in particular that the time series we are concerned with here are causal, i.e., are zero for negative
k. '
One way of representing convolution utilizes a simple modification of Z transforms, which we shall
call the Y transform. We define the Y transform a(y) of an infinite causal time series {a} by the formal

power series

aly) = > any™ (1.2)

n=0
For any finite segment of a causal time series, the Y transform is a j olynomial. Here, we want to

examine the convolution equation (1.1} in terms of Y transforms, where it can be shown to take the form

c(y) = a{y) - b(y), (1.3)

that is, the convolution of two time series becomes multiplication of their Y transforms. If we wish to

deconvolve {b} from {c}, when {a} is known, the formal solution should, in principle, then be

b(y) = c(y)/aly). (1.4)

Unfortunately, *he division algorithm seldom works in practice because of noise in the data. Due to
noise, a{y) does not exactly divide ¢(y), and the division process magniﬁ'es the errors exponentially with
increasing terms in the time series.

A second approach is to divide the fast Fourier transforms (FFT's) of the two functions. This idea

may also be explained in complex function language as follows. The well-known Cauchy theorem, applied

on the unit circle, give:

1 c(y) dy X
be = — 2 .
. 2m‘fa(y)y"“' (1:9)
which is the Taylor’s series (i.e., causal time series) for {b}. If we evaluate this integral numerically by

sampling on the unit circle at the points

y = e2™UN for £=0,1,...,N -1, (1.6)
equation (1.5) leads directly to the FFT division formaula.



In the deconvolution problem, we shall assume that a(y) is given and that ¢(y) is measured in the
presence of noise. We shall further assume that a(y) and c(y) are both causal, and hence b(y) is causal,
where b(y) is to be determined.

The difficulty in using the FFT division method for determining the series {b} stems from the fact
that a(y) often has roots inside the unit circle (typically about N/2 such roots). In the integral (1.5)
the roots of a(y) become poles and consequently, from complex function theory, equation (1.5) will not
in general give the wanted Taylor’s series, but rather a Laurent series (2 non-causal series which is only
valid within an annular region of convergence bounded by the nearest poles bracketing the unit circle).
Only if all the roots of a(y) happen to lie outside the unic cifcle is the method exact.

We cannot do anything about the location of the roots of a(y), since they are characteristic of the
series {a}. The transform of c(y), which is formally the product of a(y) and {the unknown) b{y), should
have among its roots all those roots of a{y), including those lying inside the unit circle. In the absence
of noise and if the calculation were perfect, these roots of c(y) would exactly cancel the roots of a(y) {the
poles of 1/a(y)] in the division (1.4). The result would be a causal b(y) with a Taylor’s series expansion.
The reason this approach generally fails is that ;loise in the measurement of c(y) perturbs the location
of the roots so that they are not exactly divided by those of a(y). This suggests that a new and robust
deconvolution method could be developed based on a procedure for adjusting ¢(y) so that its roots include
all of those of a(y) inside the unit circle; in this case the FFT division |equations (1.5) and (1:6)] should
give a»stable, and causal, result.

To adjust ¢(y), let y be any complex number and consider the N-dimensional vector

’ y=ued. 9

where T denotes transpose. Similarly, we can represent the series {a}, {b} and {c} as the vectors g, b
and ¢ of appropriate dimension. Then the dot product of g and y is a(y), and if y; is a root of a{y)} lie.,
a(y1) = 0}, this means that y, is or. Yogonal to g. Therefore, if we can find all the roots of a(y) inside the
unit circle, we can use powerful least-squares projection methods to adjust the series ¢ to a new series .
The new series £ can be selected to be the closest one to ¢, in a least-squares sense, which is orthogonal
to all the geometric root vectors y, where y are the roots of a(y) inside or on the unit circle. To put this
another way, we select the new series £ which minimizes the distance between & and ¢, i.e., (c— AT {c-3),

subject to the constraints

Ty, =0, k=12...K

where y, are the roots of a(y) in and on the unit circle. The atter problem can also be interpreted as
selecting & as the projection of ¢ onto a subspace orthogonal to the space spanned by the geometric root

vectors Y, . This approach can easily be generalized so that the new series ¢ can be selected with time



or frequency weighting to take advantage of a priori information about the signal and noise statistics.
Now the common roots of &(y) and a(y) will divide exactly, and the resulting series obtained by FFT
division, i.e., by using &(y)/a(y) in equation (1.5), will be the *best® causal estimate of {b}. We call {¢}
the root-projected series and the resulting {8} the root-projection deconvolution (RPD) estimate of {b}.

We have previously developed a singular-value matrix method {SVD) as an alternative approach for
solving the deconvolution problem, and this method is quite powerful [6]. However, it requires selecting
a best gueas filtered answer and frequently that is difficult to do. Also, the frequency transform of
the estimated answer often has unnecessary errors, even in those frequency bands where there is much
information, because the eigenfunctions which are built by the method to represent the answer do not quite
reflect the exponential functions used in a frequency representation. Because the particular decomposition
of the answer differs for SVD (singular-vector representation) and RPD (frequency representation), the
information (signal) and noise are distributed differently over the orthogonal “channels” corresponding
to the particular basis functions utilised in that representation. For example, typically the SVD estimate
will show some of the most prominent high frequency features, but will have reduced low frequency
fidelity. The RPD estimate, on the other hand, will tend to have good low frequency features, but will
have reduced high frequency features and greater end noise in the time representation. This suggests
that the two “complementary” approaches, SVD and RPD, can be combined to exploit the best features
of each. One strategy that has been successfully demonstrated on numerous simulation problems consists
of the following. SVD and RPD are each applied independently to produce a first estimate to the inverse.
The data residuals generated by each algorithm, conservatively filtered to avoid extraneou: features, are
then fed into the other algorithm. What one of these algorithms may discard as noise can contain useful
signal when decomposed using the other algorithm. Taking the average of the final two estimates yields
an estimate that is not only more accurate, but more robust than the result of using either separately.
The process of combining SVD and RPD in this manner we call the cross-cut deconvolution algorithm,
which has been successfully applied to a variety of extremely ill-conditioned deconvolution problems,

employing both simulated and experimental signals [1].

2. Ultrasonic Measurement of Internal Temperature Distributions

The development of a sensor for measuring the internal temperature distribution in hot metallic
bodies has long been identified by the American Iron and Steel Institute (AISI) as a fundaméntal goal
in improving productivity and quality and optimising energy cousumption in metals processing. As
a consequence, the AISI and the National Bureau of Standards initiated a joint research program to
develop such a temperature sensor based on ultrasonic velocity measurements. Potential applications
include measuring the internal temperature distribution in steel ingots during reheating and monitoring
the temperature profiles of steel strands produced by continuous casting. The temperature sensor is
based on the tomographic reconstruction of sound velocity from ultrasonic time-of-flight measurements

— a particularly ill-conditioned inverse problem.



The operation of the sensor relies on measuring changes in the velocity of sound through a hot metallic
object and exploiting the strong, almost linear, dependence of ultrasonic velocity on temperature [2]. For
example, 304 atainless steel exhibits a change of longitudinal velocity of about -0.68 m/sec per degree

Celsius. If the relationship is sufficiently linear, we may write in general,

o{r,t) = vpey + ﬂ(T(L t) — Trer), (2.1)

where the space and time dependence, (r,t), of the velocity v has been explicitly indicated since the
temperature T is in general a function of r and ¢t. The constants v,.s, T;c; and § are presumed known
from prior measurement.

Ultrasonic velocity is measured by recording the time-of-flight {TOF) of transmitted ultrasonic pulses
through the sample. This provides a measure of the average velocity along the propagation path, which,
in turn, can be converted to a measure of the average temperature along the path using a previously
calibrated, velocity-temperature relationship of the form (2.1). Moreover, an actual image, or map, of
the temperature distribution can be derived using tomographic reconstruction algorithms if a sufficient
number of TOF measurements are made along multiple.overlapping paths.

The TOF of an ultrasonic pulse along a ray path through an object is the line integral of the reciprocal

sound velocity along that path, i.e.,

dt
m = / il (2:2)
L

m

where 7,, is the TOF along the path L.

In principle, in tomographic image reconstruction, at least as many TOF measurements are needed
as pixels in the image. In practice, errors in the TOF and path-length measurement combine with
inherent ill-conditioning in the tomographic inversion to require considerable measurement redundancy,
in which case least-squares techniques could be employed to best estimate the temperature field. A priori
information can be used both to reduce this dependency on redundant information and to mitigate the
sensitivity of the inversion (ill-conditioning) to measurement errors.

The most important a priori constraint available to us is the assumption of symmetrical heat flow,
which is often reasonable in bodies of simple geometric shape (e.g., of circular or rectangular cross-
section). Knowledge that the temperature field is symmetrical drastically reduces the number of un-
knowns characterising the temperature field, andbthus reduces the number of required measurements by
a comparable amount. Furthermore, heat flow is well modeled by the thermal conductivity equation (a
diffusion equation). Because temperature is a solution to this equation, it is, in effect, being subjected
to a low-pass spatial filter whose spatial-frequency cutoff decreases in proportion to the square root of
the cooling time. Stated another way, rapid spatial temperature fluctuations disappear with time due
to thermal diffusion. This limit on the spatial frequency bandwidth {smoothness) of the temperature

field implies the existence of a limit on the density of data sampling (and hence on the number of TOF

<



measurements) needed to characterise the temperature distribution. Compared to medical ultrasonic or
x-ray tomography, effectively far coarser spatial resolution is sufficient to reconstruct the temperature
field.

In practice, because of time constraints and experimental complications involved in coupling ultra-
sound in and out of a hot body, a relatively small number of TOF measurements are feasible. As a
consequence, it is absolutely necessary to exploit object symmetries as well as the property that the
temperature distribution rapidly assumes a smooth shape due to thermal diffusion. The possibility of
ieconstructing reasonably accurate temperature profiles with a small number of measurements relies
crucially on the incorporation of such a priori information.

The constraint that the temperature field cannot be arbitrary, but must obey the chermal conductiv-
ity equation, suggests that we look for distributions in the general form of the solution to this equation.
In an axially.symmetric object (in which the heat flow is assumed uniform or gero in the axial direction),

the general solution reads

el
T(r,t) = Tamms + Z cn Jo(anr)e "ant, (2.3)

n=1
where Jy(-) is the Bessel function of order sero. In this equation, T, is the ambient temperature
(presumed known), ¢,, are unknown constants de‘termined by some initial {and unknown) temperature
state, ap are unknown constants determined by the boundary conditions, and « is the thermal diffusivity
(presumed known). For a square geometry (again assuming constant heat flow in the z-direction), the

general solution is

o e
T(z,y,t) = Topmp + E Z tnm co8(anz) cos(amy)e=(@ntam)e (2.4)

n=lm=1
where, once again, the (unknown) constants c,,, and an are determined by the initial and boundary con-
. ditions. A reasonable approach would be to use the ultrasonic TOF Mmeasurements and the relationships
{2.1) and (2.2) to fit the unknown parameters in the above temperature models, namely the c, and a, in
¢quation (2.3) or the ¢, and an in equation (2.4), for a finite number of terms in the sum. Because we
know that the lower-order terms dominate in a short time due to the exponential time dependence that
increases rapidly with order, a reasonable first approximation would be to retain only the single lowest
order terms in the sums (2.3) and (2.4). This approach has formed the basis of a practical inversion
scheme that has been successfully checked against experiment [2). When only the lowest-order terms are
kept, the above temperature models eimplify as follows.
For axial symmetry,

T(r,t) = Tams + (Te ~ Tams) Jo(ar)e="e, (2.5)

where, for convenience, we have dropped the subscript one on a and renamed the first coefficient, c,,

by defining ¢; = T, — Ty,np. In the above temperature model note that T, = T(0,0) corresponds to the



axial temperature at an initial time when t = 0. In the above model there are only two undetermined

parameters: T and a.

For a square cross-section, keeping the lowest-order term in equation (2.4) similarly yields

T(z,y,t) = Tams + (T — Tams) cos(az) cos(ay)e"""", (2.6)

where, once again, T.. and « are the two undetermined parameters, and T, = T(0,0,0).

For vurposes of illustration, consider the model (2.6) for a squarev cross-section. {The general pro-
cedure extends, of course, to the axially-symmetric case.) Suppose the TCF measurements are made
through a square block along M paralle! pathe at heights y,, and at times ¢,,. Suppose further that
the length of the side of the block is 2a. Inserting equation {2.1) into (2.2) gives the “model-generated”

measurements, T,

\

¢

a dz .
7 b)) = , m=1,2,...,M, (2.7
(ym M) -/:c Vpes + ﬂ{T(z:gma tm) - Trc/] ’ !

where T(z,y,t) is defined by cquation (2.6) and M is the number of measurements. The paiameters 7.

and o are then chosen to minj ‘ize the mean-square error

M
E= Z lr(yM1tm; - 'F(ym,tm)lag (2,8)

m=1

where 7(ym;tm) is the 7 asured TOF value at position y,, and time t,,, and #{Ym, tm) 18 the computed
TOF value using equation {2.7). The numerical minimizaticn of equation (2.8) with respect to T, and o
may be performed using welkknown nonlinear least-squares algorithms.

Both the cylindrical and rectangular versions of the above reconstruction scheme were applied to
TOF measurements made through, -espectively, a 6 inch diameter cylinder and a 6 x 6 inch square block,
both composed of 304 stainless steel. The TOF measurements were performed at temperatures ranging
from 25° C to 750° C. Thermocouples embedded in the steel samples were used as an independent check
of the temperature derived from the TOF measurements. Agreement between the thermocouple readings
and the reconstructed temperature distribution was generally within - 0° C, well within the experimental
error expected from the estimated uncertainty in the TOF and path -length measurements. A detailed

description of the experimental apparatus and the resulting temperature reconstructions are given in [2}.

3. Determination of Electrical Conductivity Profiles from Frequency-Sweep Eddy Current Measurement

The problem of measuring a spatially-varying electrical conductivity profile in the interior of
conducting body has only recently been addressed in electromagnetic NDE, although this inverse problem
has received some attention in geophysics. Several approaches to the conductivity inversion problem in
the geophysica;l context were reported by Weidelt {7], Parker (8], and Parker and Whaler [9] in their work
on depth-profiling the earth’s conductivity from measurements of the time dependence of surface currents.

The work reported below is an adaptation of Parker’s [8] inversion scheme to problems in NDE 3.



The penetration of an ac magnetic field into a body of uniform conductivity is exponentially atten-

uated with a characteristic decay distance given by the well-known formula for skin depth,

8 =+/2fowpy, (3.1)

where o is the conductivity, w the angular frequency, and po the (free space) permeability. A measure-
ment of impedance at the surface of the body will give a determination of the electrical conductivity.
If the conductivity is allowed to vary with depth into the body, one could attempt to reconstruct the
conductiviiy profile by performing surface impedance measurements at many frequencies. High frequency
measurements would respond to the conductivity near the surface, whereas low frequency measurements
would reflect conductivity values at.greater depth. Thus, one would feel intuitively that an inversion pro-
cedure based on multi-frequency measurements could allow a reconstruction of an arbitrary conductivity
profile without invoking specific a priori models (e.g., an assumed single surface layer).

The complexity of the general problem requires, however, that we limit the discussion to profiling
planar stratified material, i.e., material in which the conductivity is a function only of the depth, z, below
a planar surface. For computational convenience, we also assume that the material is terminated by a
perfect conductor at a depth h. This assumption does no harm if h is much greater than the skin depth
corresponding to the lowest measuring frequency available. This forces the electric field to vanish at the
terminating conductor, allowing a solution in terms of discrete eigenfunctions. However, this requirement
of an E-field node is automatically satisfied for all frequencies at the central plane of a symmetric plate,
provided equal H-fields are applied to both sides; Also, an equivalent condition (E = 0 for r = 0) is
automatically satisfied at all frequencies for a cylinder in a uniform H-field parallel to the cylindrical axis,
provided the conductivity is a function of the radius only. Thus, the condition of a fixed E-field node can
be assumed in man'y common NDE configurations.

The differential equation for the time-dependent electric field, E(z,t), with the depth-dependent
conductivity o(z), is

3’E oF
37 = I‘od(z)'é't-- (32)

If we assume single-frequency excitation of the form E(z,w) exp(—iwt), we have

3E .
| Fr i twgo(z)E = 0, (3-3)
and an equation for the magnetic field, H, of similar form. An implicit integral equation for E and its

derivative, E'(z), can be obtained by integrating equation (3.3) once, giving

E'(2) = Eo' + iwpo / E(z')o(2) d', (3.4)
0



and integrating again to give

E(z) = Eo + Eo'z + iwpg /(x —- f')E(s')o(2') d?, (3.5)
°

where Ey and E,’ are constants of integration and are fixed by the boundary condition at z = 0.
We now approximate the conductivity profile as a weighted set of N infinitesimally-thin, parallel
conducting shells at depths z; and conductivities r;, i.c., we let

N
a(z) = Z 1:6(z — ). (3.6)

i=1
Between shells the magnetic field is constant, and thus the electric field varies uniformly with z. The
current in each shell is proportional to the electric field at the shell and induces a jump in the magnetic
field of an amount r; E(2;). This causes a corresponding jump in the derivative of the electric field of an

amount swpo E(s;). That is, across the i-th shell, E(s) is continuous, but

E'(z-) — E'(z:+) + iwpor: E(x:+), (3.7)

as can be seen from equation (3.4).

A principal quantity of interest in the inversion problem is the so called admittance function, defined
by .

E(z,w)

E (z,w) '
This function can be measured at the surface z = 0 from measurements of the electric and magnetic fields
E(0,w) and H(0,w) as a function of frequency. c(w) can equivalently be derived from surface impedance

measurements and knowledge of H{0,w) [10). The surface admittance is

¢(s,w) = (3.8)

E0,w)  E(0,w)
E'0,w) swpoH(0O,w)

From equation (3.4) and (3.5), and in view of the definition (3.8), we see that in propagating from

cfw) =c(0,w) = (3.9)

2z;_) to z; between conducting shells, where no conductors are present, the admittance undergoes a change

e(zi-1+,w) = —(z - zZiq)+ ¢z, —,w).

On the other hand, in propagation across the shell at z; it follows from equations (3.7) and (3.8) that
the change is given by

- 1
c{zi+,w) =

Wty + ——
HoT; prP—

Noting that c(h,w) = 0 (since the electric field vanishes at h), we can apply these rules successively to

obtain a continued-fraction representation of the surface admittance:
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clw) = —ho + ) (3.10)

whot +

—h1 +

, swpe Ty + 1

. ——h;
where the h; = ;41 —32; are the spatial separations between the shells. When the above cortinued-fraction
representation is rationalised it reduces to the ratio of two polynomials of degree N. This polynomial

ratio can then be expanded in a sum of partial fractions, giving

o~ Asfw)

“ =2

(3.11)

n=
where the A, are real and A, (w) are polynomial functions in w. Thus, equation (3.10) has been cast in the
form of a spectral density function. As written, equation (3.11) implies that ¢(w) has N poles lying on the
positive imaginary axis. This can be independently verified as follows. A set of real normal mode solutions
to the eddy current equation (3.2) are the exponentially-damped functions E(z,t) = u,(z) exp(—Ant).

Inserting these modes into equation (32) results in

33u,
012

where the eigen-solutions, u,, are subject to the boundary conditions u,{h) = 0 and Su,/3z = 0 at

+ poo(2)Anun =0, (3.12)

2 = 0. The boundary conditions generate a discrete set of normal modes, corresponding to the real
eigenvalues A, n = 0,1,..., which decay in time, each with its own time constant ),,. Now, the Green’s

function for the eddy current equation (3.3) obeys the equation

82G(2|7)
822

subject to the boundary conditions G(h, z') = 0 and 3G(z]#’)/82z = 0 at z = 0. Performing the expansion

+iwpea(z)G(z]2') = ~6(z — 2'), (3.13)

of the Green’s function in terms of the eigenfunctions of equation {3.12), u,(z), we have

Gal) =Y %ﬁl ' (3.14)
n=] n

With the help of equations (3.12) and (3.13) and Green’s theorem, it is easy to verify that

E(0,w)
- E’(O) w)

Comparing equations (3.14) and {3.15) to (3.11) shows that the finite shell problem corresponds exactly
to the spectral expansion (3.14) truncated at N terms. This confirms that the A, in equation {3.11) are

G(0]0) = = —c(w). (3.15)

real and that the poles of ¢(w) lie on the imaginary axis.
The proposed scheme of obtaining the couductivity profile is as follows:



1. From impedance measurements, obtain c(w) at numerous values of the (real) frequency w, in a range
such that the skin depths span the dimensions of interest.

2. From the measurements of c(w), obtain a best fit to a truncated expansion of the form of equation
(3.11). The task of performing this fit with incomplete and imprecise data has been treated by
Parker 8] and Parker and Whaler [9].

3. Transform the partial fraction form to the model of conductive shells by performing the expansion
into the continued fraction form (3.10). The locations and strengths of the shells can, in principle,
be picked off by inspection. Algorithms for this computation have also been implemented by Parker
and Whaler [9]. This gives a profile in terms of é-function shells.

4. Spread the conductances of the §-function shells into the space between the shells. We arbitrarily
bisect the regions between shells and spread the strength of each shell uniformly between the neigh-
boring bisecting planes. This procedure gives the profile in the form of a series of flat steps. This
last procedure is based on the concept that each §-function shell obtained in the inversion process
represents continuously distributed conductance.

The simplest realizable arrangement in which a uniform field may be applied to a sample is that of
a long solenoid with a cylindrical core. If the conductivity depends only on the radial coordinate, and if
we may neglect end effects, the problem may be transformed into the form of the previously treated case

of the planar stratified medium. In the cylindrical case the admittance is defined by [10)

__E@R _ ER)
) = B () ~ T0E) (3-16)
i ol

where R is the radius of the sample. In addition, the inversion algorithm for a set of shells carries over

from the planar case by the transformation:

¢(w) — Re(w)
n—r/R;
hi = (Riy1® - RP)/2.
If these substitutions are made, the previous development applies.

Ekperimental tests were performed on several cylindrical samples, including a solid brass rod, a
brass tube with a copper center, and a brass tube with a tungsten center. Impedance data were acquired
after inserting the metal cylinders into a cylindrical coil. A detailed description of the experimental
arrangement and the resulting conductivity profiles may be found in [3]. In the tests on metal cylinders,
good qualitative experimental agreement was achieved; in particular, the locations of the discontinuities in
conductivity at the interface between the different metals were accurately reproduced. Unfortunately, the
quantitative agreement between the true and reconstructed conductivity values was quite inconsistent.
The latter result may reflect limitations of the shell model [equation (3.6)] as well as the severe ill-

conditioning inherent in the conductivity inversion problem. To improve the method, other geometric



