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Preface

General relativity (GR), one of the most and best checked physical theories of our
time, exhibits singularities: The theory predicts that when a sufficient large mass
collapses, no known force is able to stop it until all mass is concentrated at a point.
The theory also predicts so-called coordinate singularities. These are singularities
in the metric which vanish after a transformation to different coordinates. For
example, when an astronaut falls freely towards a black hole, he will not see
anything special, except the gravitational force with its deadly tidal effect. However,
a fixed observer at a safe distance will see at a certain distance from the center, the
Schwarzschild radius for a nonrotating black hole, an event horizon. No informa-
tion can reach the observer from places at smaller radial distances! This is a rather
discomforting observation, telling that part of the space is excluded from the
observation by a nearby observer. On the other hand: Why should GR still be valid
in extremely strong gravitational fields, as one encounters near the Schwarzschild
radius?

This was the reason why two of the authors of this book (P.O. Hess and
W. Greiner) started to discuss this point several years ago. We believe that no
acceptable physical theory should have a singularity (!), not even a coordinate
singularity of the type discussed above! The appearance of a singularity shows the
limitations of the theory. In GR this limitation is the strong gravitational force
acting near and at a supermassive concentration of a central mass. There are other
very successful theories, like the Quantum Electrodynamics (QED), which exhibits
singularities, infinities, due to taking into account the very large momenta corre-
sponding to very small distances in space-time. Most of the physicists would agree
that any field theory should not apply at very small distances. Methods of regu-
larizing field theories have been developed, giving a recipe how to remove the
infinite contribution. But that is what they are: Recipes! In 2007 the authors of this
book published a new field theory, called pseudo-complex Field Theory, where they
introduced pseudo-complex variables, which will play an important role in this
book. Owing to the extension to pseudo-complex fields and operators, it is shown
that the theory is automatically regularized. This is due to the appearance of a
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minimal length as a parameter. Because it appears only as a parameter, Lorentz
transformation does not affect it, thus, all continuous and discrete symmetries of
nature are maintained! However, due to the extremely small effects and the min-
imal length, there is no hope to measure the deviations in near future.

This was the reason why we started to look for extreme physical situations, such
as strong gravitational fields near a large mass. The first question was: Is there a
possibility to avoid the formation of the event horizon? This would mean that the
large mass concentrations, for example at the center of galaxies, are still there but
these objects are no black holes! It will be shown that there is one natural algebraic
extension of GR, namely to pseudo-complex (pc) coordinates. We developed the
pseudo-complex General Relativity (pc-GR) and found several observational effects
which can be measured in near future (See Chap. 5 of this book). The very long
baseline interferometry (VLBI), to which ALMA, the European observatory in the
Atacama dessert in Chile belongs, will be able to resolve the central massive objects
at the centers of our galaxy and in M87. Thus, as GR, also pc-GR is a testable
theory!

This book contains several exercises with explicit and detailed solutions. It is
therefore also of interest for students working in GR. Many of the exercises cor-
respond to considerations not published in text books or at least not in detailed
form. We therefore are convinced that this book is helpful also for students only
starting to work in General Relativity.

The book is divided into seven chapters. In Chap. 1, the necessary basis is led to
deal with pc-variables. This chapter is necessary to understand the content from the
second chapter and further on. The noninterested reader can skip it but surely he
will have to return soon to the first chapter.

Chapter 2 is a central piece of this book, where the pc-GR is introduced and the
basic philosophy is discussed. First, a historical overview is given on former
attempts to extend GR (which includes Einstein himself), all with distinct moti-
vations. It will be shown that the only possible algebraic extension is to introduce
pc-coordinates, otherwise for weak gravitational fields, nonphysical ghost solutions
appear. Thus, the need to use pc-variables. We will see that the theory contains a
minimal length with important consequences. After that, the pc-GR is formulated
and compared to the former attempts. A new variational principle is introduced,
which requires in the Einstein equations an additional contribution. Alternatively,
the standard variational principle can be applied, but one has to introduce a con-
straint with the same former results. The additional contribution will be associated
to vacuum fluctuation, whose dependence on the radial distance can be approxi-
mately obtained, using semiclassical quantum mechanics. The main point is that
pc-GR predicts that mass not only curves the space but also changes the vacuum
structure of the space itself. In the following chapters, the minimal length will be set
to zero, due to its smallness. Nevertheless, the pc-GR will keep a remnant of the
pc-description, namely that the appearance of a term, which we may call
“dark energy,” is inevitable.

The first application will be discussed in Chap. 3, namely solutions of central
mass distributions. For a nonrotating massive object, it is the pc-Schwarzschild
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solution; for a rotating massive object, the pc-Kerr solution; and for a charged
massive object, it will be the Reissner—Nordstrom solution. This chapter serves to
become familiar on how to resolve problems in pc-GR and on how to interpret the
results. One of the main consequences is that we can eliminate the event horizon
and thus, there will be no black holes! The huge massive objects in the center of
nearly any galaxy and the so-called galactic black holes are within pc-GR still there,
but with the absence of an event horizon!

Chapter 4 gives another application of the theory, namely the Robertson—Walker
solution, which we use to model different outcomes of the evolution of the universe.
New solutions will appear as the limit of constant acceleration, the limit of zero
acceleration after a period of a nonzero acceleration. We also discuss the possibility
of an oscillating universe, with repeated big bangs, with no need to explain the
smoothness of the universe.

The success of a theory depends on the capability to predict new phenomena.
Chapter 5 is just dedicated to this purpose. We will see that at a large distance from
a large massive object, GR and pc-GR will show no differences. However, near the
Schwarzschild radius significant deviations of pc-GR from GR are predicted. The
orbital frequency of a particle in a circular orbit and stable orbits in general will be
calculated. As a distinct feature, in pc-GR there will be a maximal orbital fre-
quency. We show that above a given spin of the star, there will be no innermost
stable circular orbit ISCO) and an accretion disk will reach the surface of the star.
This has important consequences for the physics of the accretion disk: It will appear
brighter (emit more light) and due to the maximum in the orbital frequency, a dark
ring is predicted by pc-GR. Also the redshift will be calculated. This is of great
importance: One observes so-called quasi-periodic oscillations (QPO) and the
redshift of Fe Ka lines. Knowing the orbital frequency of a QPO and the redshift,
GR and pc-GR get for each observable a radius for the position of the QPO. Both
radii, obtained from both observables, should coincide. They do not in GR, but they
do in pc-GR! Of course, this depends still on the interpretation of the nature of the
QPO and the discussion is still on.

In Chap. 6, neutron stars are discussed and a primitive model for the coupling of
mass to the dark energy is proposed. This chapter is of conceptional nature and is
meant to show that large masses for neutron stars can be obtained. The jewel of this
chapter is the discussion of the so-called energy conditions. They are used to see if
an ansatz for an energy—momentum tensor, treating for example ideal fluids, makes
sense. We found no book or article in the literature where these conditions are
treated as extensively as here with detailed solutions. Thus, this chapter serves also
for people interested only in the standard theory of GR.

Finally, in Chap. 7, the geometric differential structure of pc-GR is investigated.
The motivation for this chapter is to complete the presentation of pc-GR in a
rigorous manner. For a noninterested reader of differential geometry, this chapter
can be skipped. However, he may find it to be useful, to learn more of this topic.
No explicit knowledge of differential geometry is required, because all necessary
definitions will be given. This makes this chapter especially useful.
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The book appears within the series of the FIAS Lecture Notes, which is meant to
publish on topics of interdisciplinary interest and new developments. We think that
this is an ideal place for resuming all results obtained within pc-GR.

Finally, we would like to express our sincere thanks to all the people who
contributed with their help to the realization of this book. We thank Gunther Caspar
and Thomas Schonenbach for their contribution to Chaps. 3 and 5, Thomas Boller
and Andreas Miiller for their contribution to Chap. 5 and Isaac Rodriguez for his
contribution to Chap. 6. The Chap. 3 is based mainly on the master theses of
Thomas Schonenbach and Gunther Casper, Chap. 5 is on the Ph.D. thesis of
Thomas Schonenbach, and Chap. 6 is based on the Ph.D. thesis of Isaac Rodriguez.
We acknowledge useful comments by J. Kirsch. We also thank Laura Quist for their
patience and logistic help. P.O.H. wants also to acknowledge financial help from
DGAPA-PAPIT (IN100315). M.S. acknowledges the support from Stiftung
Polytechnische Gesellschaft.

Mexico City Peter O. Hess
Frankfurt am Main Mirko Schifer
Frankfurt am Main ‘ Walter Greiner

~March 2015
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