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Algebraic Topology

This geometrically flavored introduction to algebraic topology has
the dual goals of serving as a textbook for a standard graduate-
level course and as a background reference for many additional
topics that do not usually fit into such a course. The broad cover-
age includes both the homological and homotopical sides of the
subject. Care has been taken to present a readable, self-contained
exposition, with many examples and exercises, aimed at the
student or the researcher from another area of mathematics
seeing the subject for the first time.

The four main chapters present the basic core material of
algebraic topology: fundamental groups, homology, cohomology,
and higher homotopy groups. Each chapter concludes with a
generous selection of optional topics, accounting for nearly half
the book altogether.

.
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Preface

This book was written to be a readable introduction to algebraic topology with
rather broad coverage of the subject. The viewj:ioint is quite classical in spirit, and
stays well within the confines of pure algebraic topology. In a sense, the book could
have been written thirty or forty years ago since virtually everything initis at least
that old. However, the passage of the intervening years has helped clarify what are
the most important results and techniques. For example, CW complexes have proved
over time to be the most natural class of spaces for algebraic topology, so they are
emphasized here much more than in the books of an earlier generation. This empha-
sis also illustrates the book’s general slant towards geometric, rather than algebraic,
aspects of the subject. The geometry of algebraic topology is so pretty, it would seem
a pity to slight it and to miss all the intuition it provides.

At the elementary level, algebraic topology separates naturally into the two broad
channels of homology and homotopy. This material is here divided into four chap-
ters, roughly according to increasing sophistication, with homotopy split between
Chapters 1 and 4, and homology and its mirror variant cohomology in Chapters 2
and 3. These four chapters do not have to be read in this order, however. One could
begin with homology and perhaps continue with cohomology before turning to ho-
motopy. In the other direction, one could postpone homology and cohomology until
after parts of Chapter 4. If this latter strategy is pushed to its natural limit, homology
and cohomology can be developed just as branches of homotopy theory. Appealing
as this approach is from a strictly logical point of view, it places more demands on the
reader, and since readability is one of the first priorities of the book, this homotopic
interpretation of homology and cohomology is described only after the latter theories
have been developed independently of homotopy theory.

Preceding the four main chapters there is a preliminary Chapter 0 introducing
some of the basic geometric concepts and constructions that play a central role in
both the homological and homotopical sides of the subject. This can either be read
before the other chapters or skipped and referred back to later for specific topics as
they become needed in the subsequent chapters.

Each of the four main chapters concludes with a selection of additional topics that
the reader can sample at will, independent of the basic core of the book contained in
the earlier parts of the chapters. Many of these extra topics are in fact rather important
in the overall scheme of algebraic topology, though they might not fit into the time
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constraints of a first course. Altogether, these additional topics amount to nearly half
the book, and they are included here both to make the book more comprehensive and
to give the reader who takes the time to delve into them a more substantial sample 6f
the true richness and beauty of the subject.

Not included in this book is the important but somewhat more sophisticated
topic of spectral sequences. It was very tempting to include something about this
marvelous tool here, but spectral sequences are such a big topic that it seemed best
to start with them afresh in a new volume. This is tentatively titled ‘Spectral Sequences
in Algebraic Topology’ and is referred to herein as [SSAT]. There is also a third book in
progress, on vector bundles, characteristic classes, and K-theory, which will be largely
independent of [SSAT] and also of much of the present book. This is referred to as
[VBKT], its provisional title being ‘Vector Bundles and K-Theory.’ '

In terms of prerequisites, the present book assumes the reader has some familiar-
ity with the content of the standard undergraduate courses in algebra and point-set
topology. In particular, the reader should know about quotient spaces, or identifi-
cation spaces as they are sometimes called, which are quite important for algebraic
topology. Good sources for this concept are the textbooks [Armstrong 1983) and
[Janich 1984] listed in the Bibliography.

A book such as this one, whose aim is to present classical material from a rather
classical viewpoint, is not the place to indulge in wild innovation. There is, however,
one small novelty in the exposition that may be worth commenting upon, even though
in the book as a whole it plays a relatively minor role. This is the use of what we call
A-complexes, which are a mild generalization of the classical notion of a simplicial
complex. The idea is to decompose a space into simplices allowing different faces of
a simplex to coincide and dropping the requirement that simplices are uniquely de-
termined by their vertices. For example, if one takes the standard picture of the torus
as a square with opposite edges identified and divides the square into two triangles
by cutting along a diagonal, then the result is a A-complex structure on the torus
having 2 triangles, 3 edges, and 1 vertex. By contrast, a simplicial complex structure
on the torus must have at least 14 triangles, 21 edges, and 7 vertices. So A-complexes
provide a significant improvement in efficiency, which is nice from a pedagogical view-
point since it cuts down on tedious calculations in examples. A more fundamental
reason for considering A-complexes is that they seem to be very natural objects from
the viewpoint of algebraic topology. They are the natural domain of definition for
simplicial homology, and a number of standard constructions produce A-complexes
rather than simplicial complexes, for instance the singular complex of a space, or the
classifying space of a discrete group or category. Historically, A-complexes were first
introduced by Eilenberg and Zilber in 1950 under the name of semisimplicial com-
plexes. This term later came to mean something different, however, and the original
notion seems to have been largely ignored since.
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This book will remain available online in electronic form after it has been printed
in the traditional fashion. The web address is

http://www.math.cornell.edu/~hatcher -

One can also find here the parts of the other two books in the sequence that are
currently available. Although the present book has gone through countless revisions,
including the correction of many small errors both typographical and mathematical
found by careful readers of earlier versions, it is inevitable that some efrors remain,
so the web page will include a list of corrections to the printed version. With the
electronic version of the book it will be possible not only to incorporate corrections
but also to make more substantial revisions and additions. Readers are encouraged
to send comments and suggestions as well as corrections to the email address posted
on the web page.
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Standard Notatioas i =il "..'- R B R

Z, Q, R, C, H, O: the integers, rationals, reals, complexes, quaternions,
and Cayley octonions

&y : the integers modn

R™: n-dimensional Fuclidean space

C": complex n-space

I =[0,1]: the unit interval
-§™: the unit sphere in R"*!, all vectors of length 1

D™ : the unit disk or ball in R™, all vectors of length < 1

3D"™ = $"-1: the boundary of the n-disk '

1: the identity function from a set to itself

LI: disjoint union of sets or spaces

x , [1: product of sets, groups, or spaces

= isomorphism

A C B or B D A: set-theoretic containment, not necessarily proper
iff: if and only if
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Chapter @

Some Underlying
Geometric Notions

The aim of this short preliminary chapter is to introduce a few of the most com-
mon geometric concepts and constructions in algebraic topology. The exposition is
somewhat informal, with no theorems or proofs until the last couple pages, and it
should be read in this informal spirit, skipping bits here and there, In fact, this whole
chapter could be skipped now, to be referred back to later for basic definitions.

To avoid overusing the word ‘continuous’ we adopt the convention that maps be-
tween spaces are always assumed to be continuous unless otherwise stated.

Homotopy and Homotopy Type

One of the main ideas of algebraic topology is to consider two spaces to be equiv-
alent if they have ‘the same shape’ in a sense that is much broader than homeo-
morphism. To take an everyday example, the letters of the alphabet can be writ-
ten either as unions of finitely many S, FYTES CRETT T G TY T 1113
straight and curved line segments, or :
in thickened forms that are compact
subsurfaces of the plane bounded by |
simple closed curves. In each case the |
thin letter is a subspace of the thick =~ S
letter, and we can continuously shrink the thick letter to the thin one. A nice way to
do this is to decompose a thick letter, call it X, into line segments connecting each
point on the outer boundary of X to a unique point of the thin subletter X , as indi-
cated in the figure. Then we can shrink X to X by sliding each point of X - X into X
along the line segment that contains it. Points that are already in X do not move.

We can think of this shrinking process as taking place during a time interval
0 =t =<1, and then it defines a family of functions ft:X—X parametrized by t € I =
[0,1], where f,(x) is the point to which a given point x € X has moved at time t.

o iy
ANy, ¥,
ot
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Naturally we would like f,(x) to depend continuously on both ¢t and x, and this will
be true if we have each x € X — X move along its line segment at constant speed so
as to reach its image point in X at time t = 1, while points x € X are stationary, as
remarked earlier.

Examples of this sort lead to the followihg general definition. A deformation
retraction of a space X onto a subspace A is a family of maps f,:X—X, t €I, such
that f, = 1 (the identity map), f,(X) = A, and f,|A = 1 for all ¢t. The family f,
should be continuous in the sense that the associated map XxI— X, (x,t) — f;(x),
is continuous. '

It is easy to produce many more examples similar to the letter examples, with the
deformation retraction f, obtainéd by sliding along line segments. The figure on the
left below shows such a deformation retraction of a Mébius band onto its core circle.

The three ﬂgures on the right show deformation retractions in which a disk with two
smaller open subdisks removed shrinks to three different subspaces,

In all these examples the structure that gives rise to the deformation retraction can
be described by means of the following definition. For a map f:X—Y, the mapping
cylinder M is the quotient space of the disjoint union (XxI } uy obtamed by lden-
tifying each (x,1) € XxI T

with f(x) € Y. In the let- |
ter examples, the space X ' XxI f(X}
is the outer boundary of the | v

thick letter, Y is the thin

letter, and f:X— ¥ sends 5 ——

the outer endpoint of each Ime segment to its inner endpoint A simﬂar descrlprlon
applies to the other examples. Then it is a general fact that a mapping cylinder M 0
deformation retracts to the subspace Y by sliding each point (x, t) along the segment
{x}xI c M; to the endpoint flx)eyY.

Not all deformation retractions arise in this way from mapping cylinders, how-
ever. For example, the thick X deformation retracts to the thin X, which in turn
deformation retracts to the point of intersection of its two crossbars. The net result
is a deformation retraction of X onto a point, during which certain pairs of points
follow paths that merge before reaching their final destination. Later in this section
we will describe a considerably more complicated example, the so-called ‘house with
two rooms,’ where a deformation retraction to a point can be constructed abstractly,
but seeing the deformation with the naked eye is a real challenge.
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A deformation retraction f,:X— X is a special case of the general notion of a
homeotopy, which is simply any family of maps f,:X—Y, t € I, such that the asso-
ciated map F:XxI—Y given by F(x,t) = f,(x) is continuous. One says that two
maps fp,f;: X—Y are homotopic if there exists a homotopy f; connecting them,
and one writes f, = f;.

In these terms, a deformation retraction of X onto a subspace A is a homotopy
from the identity map of X to a retraction of X onto A, a map r:X— X such that
r(X) = A and v|A = 1. One could equally well regard a retraction as a map X — A
restricting to the identity on the subspace A C X. From a more formal viewpoint a
retraction is amap r : X — X with r? = r, since this equation says exactly that r is the
identity on its image. Retractions are the topological analogs of projection operators
in other parts of mathematics.

Not all retractions come from deformation retractions. For example, every space
X retracts onto any point x; € X via the map sending all of X to x,. But a space that
deformation retracts onto a point must certainly be path-connected, since a deforma-
tion retraction of X to a point x; gives a path joining each x € X to x;. It is less
trivial to show that there are path-connected spaces that do not deformation retract
onto a point. One would expect this to be the case for the letters ‘with holes,’” A, B,
D, O, P, Q, R. In Chapter 1 we will develop techniques to prove this.

A homotopy f,:X— X that gives a deformation retraction of X onto a subspace
A has the property that f,|A = 1 for all t. In general, a homotopy f,: X —Y whose
restriction to a subspace A € X is independent of t is called a homotopy relative
to A, or more concisely, a homotopy rel A. Thus, a deformation retraction of X onto
A is a homotopy rel A from the identity map of X to a retraction of X onto A.

If a space X deformation retracts onto a subspace A via f;:X—X, then if
r: X — A denotes the resulting retraction and i: A— X the inclusion, we have ri =1
and ir = 1, the latter homotopy being given by f;. Generalizing this situation, a
map f:X—Y is called a homotopy equivalence if there is amap g:Y — X such that
fg =1 and gf =~ 1. The spaces X and Y are said to be homotopy equivalent or to
have the same homotopy type. The notation is X = Y. It is an easy exercise to check
that this is an equivalence relation, in contrast with the nonsymmetric notion of de-
formation retraction. For example, the three graphs O-O ©O CID are aill homotopy
equivalent since they are deformation retracts of the same space, as we saw earlier,
but none of the three is a deformation retract of any other.

It is true in general that two spaces X and Y are homotopy equivalent if and only
if there exists a third space Z containing both X and Y as deformation retracts. For
the less trivial implication one can in fact take Z to be the mapping cylinder M; of
any homotopy equivalence f:X—Y. We observed previously that M, deformation
retracts to Y, so what needs to be proved is that M, also deformation retracts to its
other end X if f is a homotopy equivalence. This is shown in Corollary 0.21.
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A space having the homotopy type of a point is called contractible. This amounts
to requiring that the identity map of the space be nullhomotopic, that is, homotopic
to a constant map. In general, this is slightly weaker than saying the space deforma-
tion retracts to a point; see the exercises at the end of the chapter for an example
distinguishing these two notions.

Let us describe now an example of a 2-dimensional subspace of R?, known as the
house with two rooms, which is contractible but not in any obvious way. To build this

= TR

=5 L =7

space, start with a box divided into two chambers by a horizontal rectangle, where by a
‘rectangle’ we mean not just the four edges of a rectangle but also its interior. Access to
the two chambers from outside the box is provided by two vertical tunnels. The upper
tunnel is made by punching out a square from the top of the box and another square
directly below it from the middle horizontal rectangle, then inserting four vertical
rectangles, the walls of the tunnel. This tunnel allows entry to the lower chamber
from outside the box. The lower tunnel is formed in similar fashion, providing entry
to the upper chamber. Finally, two vertical rectangles are inserted to form ‘support
walls’ for the two tunnels. The resulting space X thus consists of three horizontal
pieces homeomorphic to annuli plus all the vertical rectangles that form the walls of
the two chambers.

To see that X is contractible, consider a closed s-neighborhood N(X) of X.
This clearly deformation retracts onto X if & is sufficiently small, In fact, N(X)
is the mapping cylinder of a map from the boundary surface of N(X) to X. Less
obvious is the fact that N(X) is homeomorphic to D, the unit ball in R*. To see
this, imagine forming N(X) from a ball of clay by pushing a finger into the ball to
create the upper tunnel, then gradually hollowing out the lower chamber, and similarly
pushing a finger in to create the lower tunnel and hollowing out the upper chamber.
Mathematically, this process gives a family of embeddings h,:D?— R? starting with
the usual inclusion D? < R* and ending with a homeomorphism onto N(X).

Thus we have X = N(X) = D* = point, so X is contractible since homotopy
equivalence is an equivalence relation. In fact, X deformation retracts to a point. For
if f, is a deformation retraction of the ball N(X) toapoint x; € X and if v : N(X) — X
is a retraction, for example the end result of a deformation retraction of N(X) to X,
then the restriction of the composition r f; to X is a deformation retraction of X to
xo. However, it is quite a challenging exercise to see exactly what this deformation
retraction looks like.



Cell Complexes Chapter0 |5

Cell Complexes .

A familiar way of constructing the torus S'x S! is by identifying bpposite sides
of a square. More generally, an orientable surface M, of genus g can be constructed
from a polygon with 4g sides
by identifying pairs of edges, |
as shown in the figure in the |
first three cases g = 1,2,3. |
The 4g edges of the polygon |
become a union of 2g circles |
in the surface, all intersect- |
ing in a single point. The in-
terior of the polygon can be
thought of as an open disk,
or a 2-cell, attached to the
union of the 2g circles. One
can also regard the union of
the circles as being obtained |
from their common point of |
intersection, by attaching 2g
open arcs, or 1-cells. Thus

the surface can be built up in stages: Start with a point, attach 1-cells to this point,
then attach a 2-cell.

A natural generalization of this is to construct a space by the following procedure:

(1) Start with a discrete set X°, whose points are regarded as 0-cells.

(2) Inductively, form the n-skeleton X™ from X"~ by attaching n-cells e} via maps
@ :S" ' —X""1 This means that X" is the quotient space of the disjoint union
X" '11, D% of X™! with a collection of n-disks D? under the identifications
X ~ @4(x) for x € 3D}. Thus as a set, X" = X" '[[ e where each e is an
open n-disk.

(3) One can either stop this inductive process at a finite stage, setting X = X" for
some n < oo, or one can continue indefinitely, setting X = [J,, X". In the latter
case X is given the weak topology: A set A C X is open (or closed) iff A n X" is
open (or closed) in X™ for each n.

A space X constructed in this way is called a cell complex or CW complex. The
explanation of the letters ‘CW’ is given in the Appendix, where a number of basic
topological properties of cell complexes are proved. The reader who wonders about
various point-set topological questions lurking in the background of the following
discussion should consult the Appendix for details.



