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PREFACE

TO THE SECOND EDITION

The pace of discovery in biochemistry has been exceptionally rapid
during the past several years. This progress has greatly enriched our
understanding of the molecular basis of life and has opened many
new areas of inquiry. The sequencing of DNA, the construction and
cloning of new combinations of genes, the elucidation of metabolic
control mechanisms, and the unraveling of membrane transport
and transduction processes are some of the highlights of recent re-
search. One of my aims in this edition has been to weave new
knowledge into the fabric of the text. I have sought to enhance the
book’s teaching effectiveness by centering the exposition of new
material on common themes wherever feasible and by citing recur-
ring motifs. I have also tried to convey a sense of the intellectual
power and beauty of the discipline of biochemistry.

I am indebted to Thomas Emery, Henry Epstein, Alexander
Glazer, Roger Kornberg, Robert Martin, and Jeffrey Sklar for their
counsel, criticism, and encouragement in the preparation of this
edition. Robert Baldwin, Charles Cantor, Richard Caprioli, David
Eisenberg, Alan Fersht, Robert Fletterick, Herbert Friedmann,
Horace Jackson, Richard Keynes, Sung-Hou Kim, Aaron Klug,
Arthur Kornberg, Daniel Koshland, Jr., Samuel Latt, Vincent
Marchesi, David Nelson, Garth Nicolson, Vernon Oi, Robert
Renthal, Carl Rhodes, Frederic Richards, James Rothman, Peter
Sargent, Howard Schachman, Joachim Seelig, Eric Shooter, Eliza-
beth Simons, James Spudich, Theodore Steck, Thomas Steitz,
Judit C.-P. Stenn, Robert Trelstad, Christopher Walsh, Simon
Whitney, and Bernhard Witkop also gave valuable advice.

Patricia Mittelstadt edited both editions of this text. I deeply
appreciate her critical and sustained contributions. I am indebted
to Donna Salmon for her outstanding drawings. David Clayton,



XXiv

David Dressler, John Heuser, Lynne Mercer, Kenneth Miller,
George Palade, Nigel Unwin, and Robley Williams generously pro-
vided many fine electron micrographs. Betty Hogan typed the
manuscript and played an indispensable role in its preparation.
Cary Leiden and Karen Marzotto carefully read the proofs. I also
wish to thank Michael Graves for his excellent photographic work.

My wife, Andrea, and my sons, Michael and Daniel, have cheer-
fully allowed this text to become a member of the family. I am
deeply grateful to them for their patience and buoyancy. Andrea
provided much advice on style and design, as she did for the first
edition.

I have been heartened by the many letters that I have received
from readers of the first edition. Their comments and criticisms
have enlighted, stimulated, and encouraged me. I look forward to a
continuing dialogue with readers in the years ahead.

August 1980 Lubert Stryer



PREFACE

TO THE FIRST EDITION

This book is an outgrowth of my teaching of biochemistry to under-
graduates, graduate students, and medical students at Yale and
Stanford. My aim is to provide an introduction to the principles of
biochemistry that gives the reader a command of its concepts and
language. I also seek to give an appreciation of the process of discov-
ery in biochemistry. My exposition of the principles of biochemistry
is organized around several major themes:

1. Conformation—exemplified by the relationship between
the three-dimensional structure of proteins and their bio-
logical activity

2. Generation and storage of metabolic energy

. Biosynthesis of macromolecular precursors

3

4. Information—storage, transmission, and expression of
b b >

genetic information

5. Molecular physiology—interaction of information, confor-
mation, and metabolism in physiological processes

The elucidation of the three-dimensional structure of proteins,
nucleic acids, and other biomolecules has contributed much in re-
cent years to our understanding of the molecular basis of life. I have
emphasized this aspect of biochemistry by making extensive use of
molecular models to give a vivid picture of architecture and dy-
namics at the molecular level. Another stimulating and heartening
aspect of contemporary biochemistry is its increasing interaction
with medicine. I have presented many examples of this interplay.
Discussions of molecular diseases such as sickle-cell anemia and of
the mechanism of action of drugs such as penicillin enrich the
teaching of biochemistry. Finally, I have tried to define several
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challenging areas of inquiry in biochemistry today, such as the
molecular basis of excitability.

In writing this book, I have benefitted greatly from the advice,
criticism, and encouragement of many colleagues and students.
Leroy Hood, Arthur Kornberg, Jeffrey Sklar, and William Wood
gave me invaluable counsel on its overall structure. Richard
Caprioli, David Cole, Alexander Glazer, Robert Lehman, and
Peter Lengyel read much of the manuscript and made many very
helpful suggestions. I am indebted to Frederic Richards for sharing
his thoughts on macromolecular conformation and for extensive
advice on how to depict three-dimensional structures. Deric
Bownds, Thomas Broker, Jack Griffith, Hugh Huxley, and George
Palade made available to me many striking electron micrographs. I
am also very thankful for the advice and criticism that were given
at various times in the preparation of this book by Richard Dicker-
son, David Eisenberg, Moises Eisenberg, Henry Epstein, Joseph
Fruton, Michel Goldberg, James Grisolia, Richard Henderson,
Harvey Himel, David Hogness, Dale Kaiser, Samuel Latt, Susan
Lowey, Vincent Marchesi, Peter Moore, Allan Oseroff, Jordan
Pober, Russell Ross, Edward Reich, Mark Smith, James Spudich,
Joan Steitz, Thomas Steitz, and Alan Waggoner.

I am grateful to the Commonwealth Fund for a grant that en-
abled me to initiate the writing of this book. The interest and sup-
port of Robert Glaser, Terrance Keenan, and Quigg Newton came
at a critical time.One of my aims in writing this book has been to
achieve a close integration of word and picture and to illustrate
chemical transformations and three-dimensional structures vividly.
I am especially grateful to Donna Salmon, John Foster, and Jean
Foster for their work on the drawings, diagrams, and graphs. Many
individuals at Yale helped to bring this project to fruition. I partic-
ularly wish to thank Margaret Banton and Sharen Westin for typ-
ing the manuscript, William Pollard for photographing space-fill-
ing models, and Martha Scarf for generating the computer
drawings of molecular structures on which many of the illustrations
in this book are based. John Harrison and his staff at the Kline
Science Library helped in many ways.

Much of this book was written in Aspen. I wish to thank the
Aspen Center of Physics and the Given Institute of Pathobiology for
their kind hospitality during several summers. I have warm memo-
ries of many stimulating discussions about biochemistry and molec-
ular aspects of medicine that took place in the lovely garden of the
Given Institute and while hiking in the surrounding wilderness
areas. The concerts in Aspen were another source of delight, espe-
cially after an intensive day of writing.

I am deeply grateful to my wife, Andrea, and to my children,
Michael and Daniel, for their encouragement, patience, and good
spirit during the writing of this book. They have truly shared in its



gestation, which was much longer than expected. Andrea offered xxvii
advice on style and design and also called my attention to the
remark of the thirteenth-century Chinese scholar Tai T ung (7he
Six Seripts: Principles of Chinese Writing): “Were 1 to await perfection,
my book would never be finished.”
I welcome comments and criticisms from readers.

October 1974 Lubert Stryer
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