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Preface

The aim of the fractional calculus is to study the fractional order integral
and derivative operator over real and complex domains as well as their
applications. We recall that the tools of fractional calculus are as old as
calculus itself.

Nowadays there are strong motivations (the unelucidated nature of the
dark matter and dark energy, the difficult reconciliation of Einstein’s Gen-
eral Relativity (GR) and Quantum Theory) to consider alternative theories
that modify, extend or replace GR. We recall that some of these theories
presume a higher dimensional space-time, and part of them predict viola-
tions of the physics fundamental principles: the Equivalence Principle and
Lorentz symmetry could be broken, the fundamental constants could vary,
the space could be anisotropic, and the physics could become nonlocal.

Fractional calculus becomes very powerful in the study of the anomalous
social and physical behaviors, where scaling power law of fractional order
appears universal as an empirical description of the complex phenomena.

The classical mathematical models, including nonlinear models, do not
give adequate results in many cases where power law is clearly present.

During the last years, the asymptotic integration and the stability of
fractional differential equations become an important research topic in the
field of fractional calculus and its applications. Thus, a better understanding
of these concepts represents one of the major tasks for researchers working
on these fields and related topics.

The book contains eleven chapters and it is based mainly on the results
reported by the authors during the last few years. The first chapter is about
the differential operators of order 14+« and their integral counterpart. The
second chapter describes the existence and the uniqueness of solution for
the differential equations of order a. Chapter three debates the position of

vii



viii Asymptotic Integration and Stability

the zeros, the Bihari inequality and the asymptotic behaviour of solutions
for the differential equations of order ev. Chapter four describes the asymp-
totic integration for the differential equations of order 1 4+ «. In chapter
five we present the existence and the uniqueness of solutions for some delay
differential equations within Caputo derivative. In chapter six we discuss
the existence and the positive solutions for some delay fractional differen-
tial equations with generalized N term. The stability of a class of discrete
fractional nonautonomous systems is shown in chapter seven. Mittag-Lefller
stability theorem for fractional nonlinear systems with delay is the subject
of the chapter eight. Chapter nine is concentrated on the Razumikhin stabil-
ity theorem for some fractional systems with delay. Chapter ten deals with
the controlability of some fractional evolution nonlocal impulsive quasi-
linear delay integro-differential systems. Finally, the book ends with the
approximate controllability of Sobolev type nonlocal fractional stochastic
dynamic systems in Hilbert spaces.

We would like to thank to all of our co-authors who helped us in writing
this book by providing many interesting comments and remarks.

Finally, we deeply thank the editorial assistance of World Scientific Pub-
lishing Co., especially Ms. L.F. Kwong and Mr. Rajesh Babu.

Dumitru Baleanu
Qankaya University, Ankara, Turkey
Institute of Space Sciences, Bucharest, Romania

Octavian Mustafa
University of Craiova, Romania
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Chapter 1

The Differential Operators of Order
1 4+ o and Their Integral Counterparts

When asked about the significance of the non-integer order for a differential
operator by anyone without special interest in the mathematics of differ-
ential equations, the fractionist! can provide the inquirer with a simple
analogy, described in the following.

Take a continuous function f : I — R, where I = [a,}] is an interval of
real numbers, and write down the identity below

160 =5 | [ seas]
— (Diffo Tut) (£)(t) = EN(®), ¢ € (ab).

The identity expresses the fact that you did one integration — the order of
the expression £(f) = Int(f) is now +1 — followed by one differentiation —
the new, and final, order of £ is (+1) + (—1) =0 —.

Let’s go further and recall, via integration by parts, that

ft) = ﬁ . jTZ [/a (t—s)" 1 f(s)ds|, tE€ (a,b). (1.1)

As before, the integral brings +1 into the sum (for computing the order),
while the “¢ —s” component is responsible for another n — 1 units of order.
The final order of £ is (+1) + (n —1) - (+1) +n - (—1) = 0.

Now, given z € C and t, ¢ > 0, the mapping z — t* = e*1°8t is entire
and it makes sense to wonder about the function z — f()t+5(t — 8)*f(s)ds
being holomorphic [Hille (1959), pp. 72, 230], a property sometimes called
upon as analytic [Ablowitz and Fokas (2003), p. 24]. Using the technique
from e.g., [Rudin (1987), Chap. 10, Ex. 16], it can be established that the

latter function is, in fact, entire. In particular, taking o € R\N and n € N,

L1 That is, the analyst of the “fractionals”.
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with n > 1, the quantity
an i+e
N0 = | [ €-9swas]. re@b
a

makes sense. Without paying any attention? to the extra “e”, deduce that
the order of the expression must be (+1)+a-(+1)+n-(-1)=a—n+1.

To conclude our analogy, we get rid of £ by making it tend to zero and
look for some positive constant to mimic the & 11), coefficient from (1.1).
The formula of a new derivative having a non-integer order “close” to n is

expressed as
ar £
O o
G, - T [/a (t—s) f(.s)ds] , te(a,b), (1.2)
where «,, € (—1,0] and ¢,, > 0. It resembles the classical Riemann-Liouville
construction [Podlubny (1999a), p. 68].

1.1 The Gamma Function

For a proper constant ¢,, we rely on Euler’s integral (of second kind) I.
This function can be stated as

I'(z) = /+00 e tt*ldt, where t* = 0, b= £,2€C
— . t] G - eé'logi, t > 0’ ’ ]

and the real part of z is positive [Olver (1974), p. 31].
Since we shall employ everywhere only the most common of its prop-
erties, we remind the interested reader that he or she can delve anytime

into the detailed proofs of results about the Gamma function from [Olver
(1974); Podlubny (1999a)]. As for ourselves, just remember that

T'(z+1) =2z-T(2),

I'(n) =(n—1), n € N\{0}, -
I'(z) - T(1—2)= ﬁ, when 2 is non-integer, (1.3)
N Tie) _ [ yn-1(1 — o) tdu, 21, € C,

where the real parts of 2z, 2o are positive. The last quantity in (1.3) is the
Euler integral of first kind, also referred to as the Beta function B(z;, 22)
[Olver (1974), p. 37].
Following [Baleanu et al. (2011c)], we claim as well that
1
I'(8) > =——=, B€(0,1). 1.4
B> =g BEOD (14)

2For a technical approach, see [Stein (1970), p. 77, Lemmal].
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To prove the assertion, just remark that
L) -r2-p)=Q0-/ra-z)-rE) =1 -7p)

_ x1-p)
sin(w(1 — B))’

™

. sin(73)

which leads to

lm T(8)- T2~ ) = +o0, LmI(8)-T2~p)=1.

Observe also that there are no critical points of the function 3 +— :—l(nl(%g)l in
(0,1). This follows from the fact that the unique solution of the transcen-
dental equation tan (1 — ) = n(1 — ) in [0,1] is f* = 1. So,

rg)-re2-g)>1, pe(0,1).

The claim is established.

1.2 The Riemann-Liouville Derivative

A multitude of notations has been designed to capture the complexity of
fractional differentiation and integration, see the monographs [Samko et al.
(1993); Miller and Ross (1993); Kilbas et al. (2006)] or the classical trea-
tise [Hille and Phillips (1957), pp. 664, 673]. In a simplified version, the
Riemann-Liouville derivative, of order a € (0,1), reads as below

oD (f)(t) = HTl-Z) -% UO (t’:(z))a ds] , t>0. (1.5)

The subscripts 0 and ¢ in this symbol of derivative® hint at the integration
interval (0,t), recall (1.2).

The first issue regarding (1.5) is about the existence of the integral in-
side. As the mapping n;  given by s — (t—s)~® is a member of L' ((0, ), R),
it is natural to ask that f € L*°((0,t),R), see [Rudin (1987), Chap. 3, Th.
3.8]. In particular, this qualifies all the functions from C([0,¢], R) as candi-
dates for f.

Since any absolutely integrable function — with respect to the Lebesgue
measure on [0,t] — may take infinite values on a null-measure set, we see
that fn: o might be infinite in other points beside s = t. To take advantage
of this remark, introduce RLP = RLP((0,+00),R) the real linear space of

3Given the linearity of the right-hand part of (1.5), we shall use freely either of symbols
oD (f), oD f when referring to the Riemann-Liouville derivative of f.
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all the functions f € C((0,400), R) with tli\n(l)[tﬂf(t)] € R for some g € [0,1).

Now,

/()L %ds:/o‘ 57 - f(s) ds (1.6)

t—s sB(t — s)

[T Xes) |, [ X |
S = e o R

Again, the ratios inside the integrals are L'-functions while s + s°f(s)
is in* L2 ([0, +00),R) for any f € RLP. Here, as usual, ¥ designates the
characteristic function of a Lebesgue-measurable set. From now on we shall
presume that every function f involved in a Riemann-Liouville differenti-
ation is a member of some RLA.

The second issue concerning (1.5) is the differentiability of the integral.
To find some reasonable restrictions on f that will lead to this differentia-
bility, notice that we can perform the change of variables s = t - v for the
integral inside (1.5), that is

t 1
/ Iy e / At g, (1.7)
o (t—s) 0o (1—v)*
see [Rudin (1987), Chap. 7, Th. 7.26].

Assume now that the function f from (1.7) is (locally) absolutely con-
tinuous in [0, 4+o00), which means it is differentiable almost everywhere —
we shall use the shorthand notation a.e. — and f" € L] ([0,+00),R)
[Rudin (1987), Chap. 7, Th. 7.20]. Moreover, we ask that the mapping
s s f(s) be in L2 ([0,400), R) for some 3 € [0,1). We shall refer to
this mapping as s'*#f’ in the following computation. A significant partic-
ular case of our restriction is when f' € L{® ([0,400),R), which makes f
a locally Lipschitz function. We recall Rademacher’s theorem [Evans and
Gariepy (1992), p. 81] which deals with the a.e. differentiability of such
functions. Another important situation is when f € C((0, +o00),R) N RL”
and f' € RL™ for some v, 8 € [0,1). These restrictions have been mod-
eled to ensure the existence of the right-hand part of (1.11).

Allow us to recapitulate at this point several elementary facts. First,
given 3 € (0,1) and = € (0, 1], since Inz < 0, we have SIlnz > Inz and, by
exponentiation, 2 > z. Second, given « € (0,1), we get

l=(1-a)+a<(1-a)+d

4Recall that, as a consequence of Luzin’s theorem [Rudin (1987), Chap. 2, Th. 2.24], a
function f € L% ([a,b],R) is, almost everywhere with respect to the Lebesgue measure
on [a, b, the pointwise limit of a sequence of compactly supported continuous functions.
See also [Rudin (1987), Chap. 9, Sect. 9.22].




