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Preface

There are several good recent textbooks on algebraic geometry at
the graduate level, but not (to my knowledge) any designed for an
undergraduate course. Humble notes are from a course given in two
successive years in the 3rd year of the Warwick undergraduate math
course, and are intended as a self-contained introductory textbook.
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§0 1

§0. Woffle

This section is intended as a cultural introduction, and is not logically part of
the course, so just skip through it.
0.1) A variety is (roughly) a locus defined by polynomial equations:
V = {Pekn| f5P)=0}ckn,

where k is a field and fj € kIX{,.. Xp] are polynomials; so for example, the plane
curves C: (f(x, y) = 0) cRZ or €2.

X O

2 _x+ 1) +e) y2 = (x + 1)x° y2=(x+1)x2-¢)
I want to study V; several questions present themselves:

Number Theory. For example, if k= Q and VC Q", how can we tell if V is
nonempty, or find all its points if it is? A specific case is historically of some
significance: how many solutions are there to

N4yt =1, x,ye@Q, n23?
Questions of this kind are generally known as Diophantine problems.
Topology. If k is R or € (which it quite often is), what kind of topological

space is V? For example, the connected components of the above cubics are
obvious topological invariants.



2 §0 Undergraduate algebraic geometry

Singularity theory. What kind of topological space is V near P € V; if
f: V1 — V3 is aregular map between two varieties (for example, a polynomial map
R2 - R), what kind of topology and geometry does f have near P € V¢ ?

0.2) There are two possible approaches to studying varieties:

Particular. Given specific polynomials f;, we can often understand the variety V
by explicit tricks with the f;; this is fun if the dimension n and the degrees of the
fi are small, or the f; are specially nice, but things get progressively more
complicated, and there rapidly comes a time when mere ingenuity with calculations
doesn't tell you much about the problem.

General. The study of properties of V leads at once to basic notions such as
regular functions on V, nonsingularity and tangent planes, the dimension of a
variety: the idea that curves such as the above cubics are 1-dimensional is familiar
from elementary Cartesian geometry, and the pictures suggest at once what
singularity should mean.

Now a basic problem in giving an undergraduate algebraic geometry course is
that an adequate treatment of the ‘general’ approach involves so many definitions
that they fill the entire course and squeeze out all substance. Therefore one has to
compromise, and my solution is to cover a small subset of the general theory, with
constant reference to specific examples. These notes therefore contain only a
fraction of the 'standard bookwork’ which would form the compulsory core of a
3-year undergraduate math course devoted entirely to algebraic geometry. On the
other hand, I hope that each section contains some exercises and worked examples
of substance.

(0.3) The specific flavour of algebraic geometry comes from the use of only
polynomial functions (together with rational functions); to explain this, if U c R2
is an open interval, one can reasonably consider the following rings of functions on
uU:

CO(U) = all continuous functions f: U — [R;

C%(U) = all smooth functions (that is, differentiable to any order);

C®(U) = all analytic functions (that is, convergent power series);

RIX] = the polynomial ring, viewed as polynomial functions on U.

There are of course inclusions R[X] < C®(U) < CO(U) c cO).
These rings of functions correspond to some of the important categories of
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geometry: CO(U) to the topological category, C%®(U) to the differentiable category
(differentiable manifolds), C@ to real analytic geometry, and [RIX] to algebraic
geometry. The point I want to make here is that each of these inclusion signs
represents an absolutely huge gap, and that this leads to the main characteristics of
geometry in the different categories. Although it’s not stressed very much in school
and first year university calculus, any reasonable way of measuring CO(U) will
reveal that the differentiable functions have measure 0 in the continuous functions
(so if you pick a continuous function at random then with probability 1 it will be
nowhere differentiable, like Brownian motion). The gap between C®(U) and
CO(U) is exemplified by the behaviour of exp(—l/xz), the standard function
which is differentiable infinitely often, but for which the Taylor series (at 0) does
not converge to f; using this, you can easily build a C® ’bump function’ f: R —
R such that f(x) =1 if [xI<0.9, and f(x) =0 if Ix|>1:

T f(x)

a C* bump function

x —

In contrast, an analytic function on U extends (as a convergent power series) to an
analytic function of a complex variable on a suitable domain in €, so that (using
results from complex analysis), if f € C®O(U) vanishes on a real interval, it must
vanish identically. This is a kind of 'rigidity’ property which characterises analytic
geometry as opposed to differential topology.

(0.4) There are very few polynomial functions: the polynomial ring RIX] is just a
countable-dimensional R-vector space, whereas C®(U) is already uncountable,
Even allowing rational functions - that is, extending [R[X] to its field of fractions
R(X) - doesn't help much. (2.2) will provide an example of the characteristic
rigidity of the algebraic category. The fact that it is possible to construct a geometry
using only this set of functions is itself quite remarkable. Not surprisingly, there are
difficulties involved in setting up this theory:

Foundations via commutative algebra. Topology and differential topology can
rely on the whole corpus of €-8 analysis taught in a series of 1st and 2nd year
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undergraduate courses; to do algebraic geometry working only with polynomial
rings, we need instead to study rings such as the polynomial ring klX{,.. Xyl and
their ideals. In other words, we have to develop commutative algebra in place of
calculus. The Nullstellensatz (§3 below) is a typical example of a statement having
direct intuitive geometric content (essentially, 'different ideals of functions in
kiX1,.. Xp} define different varieties V < k™ ) whose proof involves quite a
lengthy digression through finiteness conditions in commutative algebra.

Rational maps and functions. Another difficulty arising from the decision to work
with polynomials is the necessity of introducing ‘partially-defined functions’;
because of the 'rigidity’ hinted at above, we'll see that for some varieties (in fact for
all projective varieties), there do not exist any nonconstant regular functions (see
Ex.5.1, Ex. 512 and the discussion in (8.10)). Rational functions (that is,
‘functions’ of the form f = g/h, where g, h are polynomial functions) are not
defined at points where the denominator vanishes. Although reprehensible, it is a
firmly entrenched tradition among algebraic geometers to use ‘rational function’ and
rational map’ to mean ‘only partially-defined function (or map)’. So a rational map
f: V{-- V3 is not a map at all; the broken arrow here is also becoming traditional.
Students who disapprove are recommended to give up at once and take a reading
course in Category Theory instead.

This is not at all a frivolous difficulty. Even regular maps (= morphisms,
these are genuine maps) have to be defined as rational maps which are regular at all
points P € V (that is, well defined, the denominator can be chosen not to vanish at
P). Closely related to this is the difficulty of giving a proper intrinsic definition of a
variety: in this course (and in others like it, in my experience), affine varieties
V © AN and quasiprojective varieties V < [P will be defined, but there will be no
proper definition of ‘variety’ without reference to an ambient space. Roughly
speaking, a variety should be what you get if you glue together a number of affine
varieties along isomorphic open subsets. But our present language, in which
isomorphisms are themselves defined more or less explicitly in terms of rational
functions, is just too cumbersome; the proper language for this glueing is sheaves,
which are well treated in graduate textbooks.

0.5 So much for the drawbacks of the algebraic approach to geometry. Having
said this, almost all the algebraic varieties of importance in the world today are
quasiprojective, and we can have quite a lot of fun with varieties without worrying
overmuch about the finer points of definition.

The main advantages of algebraic geometry are that it is purely algebraically
defined, and that it applies to any field, not just R or €; we can do geometry over
fields of characteristic p. Don’t say ‘characteristic p - big deal, that's just the finite
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fields'; to start with, very substantial parts of group theory are based on geometry
over finite fields, as are large parts of combinatorics used in computer science. Next,
there are lots of interesting fields of characteristic p other than finite ones.
Moreover, at a deep level, the finite fields are present and working inside @ and C.
Most of the deep results on arithmetic of varieties over @ use a considerable.
amount of geometry over € or over the finite fields and their algebraic closures.

This concludes the introduction; see the informal discussion in (2.15) and
the final §8 for more general culture.

0.6) As to the structure of the book, Chapter I and Chapter III aim to indicate
some worthwhile problems which can be studied by means of algebraic geometry.
Chapter II is an introduction to the commutative algebra referred toin (0.4) and to
the categorical framework of algebraic geometry; the student who is prone to
headaches could perhaps take some of the proofs for granted here, since the material
is standard, and the author is a professional algebraic geometer of the highest moral
fibre.

§8 contains odds and ends that may be of interest or of use to the student, but
that don’t fit in the main text: a little of the history and sociology of the modern
subject, hints as to relations of the subject-matter with more advanced topics,
technical footnotes, etc.
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Prerequisites for this course:

Algebra: Quadratic forms, easy properties of commutative rings and their ideals,
principal ideal domains and unique factorisation.

Galois Theory: Fields, polynomial rings, finite extensions, algebraic versus
transcendental extensions, separability.

Topology and geometry: Definition of topological space, projective space PR
(but I'll go through it again in detail).

Calculusin RM: Partial derivatives, implicit function theorem (but I'll remind you
of what I need when we get there).

Commutative algebra: Other experience with commutative rings is desirable, but
not essential.

Course relates to:

Complex Function Theory. An algebraic curve over € is a 1-dimensional
complex manifold, and regular functions on it are holomorphic, so that this course is
closely related to complex function theory, even if the relation is not immediately
apparent.

Algebraic Number Theory. For example the relation with Fermat's Last Theorem.
Catastrophe Theory. Catastrophes are singularities, and are essentially always
given by polynomial functions, so that the analysis of the geometry of the
singularities is pure algebraic geometry. '

Commutative Algebra. Algebraic geometry provides motivation for commutative
algebra, and commutative algebra provides technical support for algebraic
geometry, so that the two subjects enrich one another.

Exercises to §0.

0.1 (2) Show that for fixed values of (y, z), x is a repeated root of x3 + xy+z=0
if and only if x = -3z/2y and 4y3 +2722 = (;

(b) there are 3 distinct roots if and only if 4y3 +27z2 < 0;

(c) sketch the surface S: (x3 + xy+z=0)cR3 andits projection onto the (y, z)-
plane;

(d) now open up any book or article on catastrophe theory and compare.
0.2, Let fe RIX, Y] andlet C: (f = 0)c R2; say that P € C is isolated if there is
an £> 0 suchthat C N B(P, €) = P. Show by example that C can have isolated points.
Prove that if P € C is an isolated point then f: B2 R must have a max or min at P,
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and deduce that df/dx and 9f/dy vanishat P. This proves that an isolated point of a
real curve is singular.

0.3.  Cubiccurves: (i) Draw the graphof y = 4x3 + 6x2 and its intersection with
the horizontal lines y =t for integer values of t € [-1, 3}, (ii) draw the cubic curves y2
=4x3+6x2 -t for the same values of t,
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Most of the following are textbooks at a graduate level, and some are referred
to in the text:
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D. Mumford, Algebraic geometry I, Complex projective varieties, Springer.

D. Mumford, Introduction to algebraic geometry, Harvard notes. (Not immediately
very readable, but goes directly to the main points; many algebraic geometers of my
generation learned their trade from these notes. Recently reissued as Springer LNM
1358, and therefore no longer a little red book.)

K. Kendig, Elementary algebraic geometry, Springer. (Treats the relation between
algebraic geometry and complex analytic geometry.)

R. Hartshorne, Algebraic geometry, Springer. (This is the professional’s handbook,
and covers much more advanced material; Ch. 1 is an undergraduate course in bare
outline.)

M. Berger, Geometry I and II, Springer. (Some of the material of the sections on
quadratic forms and quadric hypersurfaces in 1I is especially relevant.)

M.F. Atiyah and L.G. Macdonald, Commutative algebra, Addison-Wesley. (An
invaluable textbook.)

E. Kunz, Introduction to commutative algebra and algebraic geometry, Birkhiuser.
H. Matsumura, Commutative ring theory, Cambridge. (A more detailed text on
commutative algebra.)

D. Mumford, Curves and their Jacobians, Univ. of Michigan Press. (Colloquial
lectures, going quite deep quite fast.)

C.H. Clemens, A scrapbook of complex curves, Plenum. (Lots of fun.).

E. Brieskorn and H. Knérrer, Plane algebraic curves, Birkhiuser.

A. Beauville, Complex algebraic surfaces, LMS Lecture Notes, Cambridge.

J. Kollar, The structure of algebraic threefolds: An introduction to Mori's program,
Bull. Amer. Math. Soc. 17 (1987), 211-273. (A nicely presented travel brochure to
one active area of research. Mostly harmless.)

J.G. Semple and L. Roth, Introduction to algebraic geometry, Oxford. (A
marvellous old book, full of information, but aimost entirely lacking in rigour.)

J.L. Coolidge, Treatise on algebraic plane curves, Oxford and Dover.



Chapter I. Playing with plane curves

§1. Plane conics

I start by studying the geometry of conics as motivation for the projective
plane P2. Projective geometry is usually mentioned in 2nd year undergraduate
geometry courses, and I recall some of the salient features, with some emphasis on
homogeneous coordinates, although I completely ignore the geometry of linear
subspaces and the ‘cross-ratio’. The most important aim for the student should be to
grasp the way in which geometric ideas (for example, the idea that 'points at infinity’
correspond to asymptotic directions of curves) are expressed in terms of
coordinates. The interplay between the intuitive geometric picture (which tells you
what you should be expecting), and the precise formulation in terms of coordinates
(which allows you to cash in on your intuition) is a fascinating aspect of algebraic
geometry.

(1.1) Example of a parametrised curve. Pythagoras’ Theorem says that, in the
diagram

. X24Y2 = 72,

X

so (3,4, 5) and (5, 12, 13), as every ancient Egyptian knew. How do you find all
integer solutions? The equation is homogeneous, so that x = X/Z, y = Y/Z gives
the circle C : (x2 + y2 = 1) € R2, which can easily be seen to be parametrised as

x=20/A2+1), y=A2-1)/A2+1), where A=x/(1-y)
so this gives all solutions: '
X=20m, Y=02-m2, Z=£02+m2 with E me Z coprime,

(or each divided by 2 if £ m are both odd). Note that the equation is
homogeneous, so that if (X, Y, Z) is a solution, then so is (WX, LY, AZ).
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Maybe the parametrisation was already familiar from school geometry, and in
any case, it's easy to verify that it works. However, if I didn't know it already, I
could have obtained it by an easy geometric argument, namely linear projection
from a given point:

P=(0,1)

P=(0,1)€ C, and if A € @ is any value, then the line L) through P with slope
~A meets C in a further point Q3. This construction of a2 map by means of linear
projection will appear many times in what follows.

(1.2) Similar example. C: (2X2 + Y2 = 5Z2). The same method leads to the
parametrisation R — C given by

2Y51 27 - 1
7' V= 7
1+2A 1+2A

This allows us to understand all about points of C with coefficients in R, and
there's no real difference from the previous example; what about @ ?

Proposition. If (a, b,c) € @ satisfies 2a2 + b2 = 5¢2 then (a, b,c) = (0,0, 0).

Proof. Multiplying through by a common denominator and taking out a common
factor if necessary, I can assume that a, b, ¢ are integers, not all of which are
divisible by 5; alsoif Sla and S|b then 2515c2, so that 5|c, which
contradicts what I've just said. It is now easy to get a contradiction by considering
the possible values of a and b mod 5: since any squareis 0,1 or 4 mod S,
clearly 2a2 + b2 is one of 0+1, 0+4, 240, 2+1, 244, 8+0, 8+1 or 8+4 mod 5,
none of which can be of the form 5c2. Q.E.D.
Note that this is a thoroughly arithmetic argument.



